is the intersection of subgroups a subgroup of each subgroupA group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups

Animated Series: Alien black spider robot crashes on Earth

What typically incentivizes a professor to change jobs to a lower ranking university?

What defenses are there against being summoned by the Gate spell?

Fencing style for blades that can attack from a distance

TGV timetables / schedules?

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

How is it possible to have an ability score that is less than 3?

Why do falling prices hurt debtors?

Problem of parity - Can we draw a closed path made up of 20 line segments...

In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?

Is it legal for company to use my work email to pretend I still work there?

Does the fruit of Mantra Japa automatically go to Indra if Japa Samarpana Mantra is not chanted?

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

How old can references or sources in a thesis be?

Test if tikzmark exists on same page

What do you call a Matrix-like slowdown and camera movement effect?

What does "Puller Prush Person" mean?

What is the offset in a seaplane's hull?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

To string or not to string

What does it mean to describe someone as a butt steak?

Is it possible to do 50 km distance without any previous training?

Can I ask the recruiters in my resume to put the reason why I am rejected?



is the intersection of subgroups a subgroup of each subgroup


A group with no proper non-trivial subgroupsSubgroups that are isomorphic to each other, and contain a common element are the same subgroupIf a group has no maximal subgroups then all elements are non-generators? Frattini subgroup characterizationLet $P$, $Q$ be two Sylow p-subgroups of $G$, is it true that $N_P(Q)=Qcap P$?Subgroups of $G=(mathbbZ_12,+)$join of pronormal subgroupsProperty of normally embedded subgroupsParity of order of intersection of cyclic and noncyclic subgroupsListing elements of the subgroups and generatorsIntersection of two subgroups













1












$begingroup$



Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




I am guessing this does not hold but why?



Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



Much thanks in advance!










share|cite|improve this question











$endgroup$
















    1












    $begingroup$



    Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




    I am guessing this does not hold but why?



    Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



    Much thanks in advance!










    share|cite|improve this question











    $endgroup$














      1












      1








      1





      $begingroup$



      Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




      I am guessing this does not hold but why?



      Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



      Much thanks in advance!










      share|cite|improve this question











      $endgroup$





      Suppose $G$ is a group, take $H,K$ as subgroups of $G$ so $H,Kleqslant G$. I know that $Hcap Kleqslant G$ but is it the case that $Hcap Kleqslant H$ and $Hcap Kleqslant K$?




      I am guessing this does not hold but why?



      Also I tried with the case that $H=langle g rangle,K=langle h rangle$ where $g$ and $h$ are the elements in $G$ ($langle h rangle$ means the minimum subgroup that contains the element $h$ if you haven't seen this notation before). I used the subspace test and I think that $Hcap Kleqslant H$ and $Hcap Kleqslant K$ hold unless I make a mistake somewhere.



      Much thanks in advance!







      abstract-algebra group-theory






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 45 mins ago









      Shaun

      10.3k113686




      10.3k113686










      asked 6 hours ago









      JustWanderingJustWandering

      592




      592




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




          Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




          1. $e in H$,

          2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

          3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



          These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



          Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



          In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






          share|cite|improve this answer











          $endgroup$




















            1












            $begingroup$

            The subgroup test is:




            $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




            Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




              Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




              1. $e in H$,

              2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

              3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



              These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



              Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



              In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






              share|cite|improve this answer











              $endgroup$

















                3












                $begingroup$

                It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




                Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




                1. $e in H$,

                2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

                3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



                These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



                Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



                In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






                share|cite|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




                  Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




                  1. $e in H$,

                  2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

                  3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



                  These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



                  Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



                  In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.






                  share|cite|improve this answer











                  $endgroup$



                  It is indeed true that $H cap K$ is a subgroup of both $H$ and $K$. For the sake of clarity, we recall the definition of a subgroup below:




                  Definition. Let $(G, odot)$ be group with identity $e$ and let $H$ be a subset of $G$. We say that $H$ is a subgroup of $G$ if each of the following hold:




                  1. $e in H$,

                  2. if $h_1,h_2 in H$ then $h_1 odot h_2 in H$,

                  3. for all $h in H$, its inverse element $h^-1$ with respect to $odot$ is also in $H$.



                  These axioms make it so that $(H, odot)$ is a group in its own right with the very same group operation $cdot$ and identity $e$. We also point out that these properties have less to do with the set $G$ than the operation $odot$ that $G$ comes equipped with.



                  Now, let $G$ be a group and let $H,K$ be subgroups of $G$. You have already verified that $H cap K$ is a subgroup of $G$. Why must it also be a subgroup of $H$ (and $K$)? First, it's clear that $H cap K subseteq H, H cap K subseteq K$ and that $H cap K ni e$. Moreover, because $H cap K$ is a subgroup of $G$, it is satisfies properties 2. and 3. above. Thus, by replacing $G$ with $H$ or $K$ in the definition above, it's immediate that $H cap K$ is a subgroup of $H$ (and $K$) as well!



                  In short, as long as $H$ is a subset of a group $G$ and $H$ satisfies the properties listed above, it will be a subgroup of $G$.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 5 hours ago

























                  answered 6 hours ago









                  rolandcyprolandcyp

                  2,309422




                  2,309422





















                      1












                      $begingroup$

                      The subgroup test is:




                      $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                      Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






                      share|cite|improve this answer









                      $endgroup$

















                        1












                        $begingroup$

                        The subgroup test is:




                        $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                        Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






                        share|cite|improve this answer









                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          The subgroup test is:




                          $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                          Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.






                          share|cite|improve this answer









                          $endgroup$



                          The subgroup test is:




                          $H$ is a subgroup of $G$ if and only if for each $x,yin H$ we've $xy^-1in H$.




                          Applied to a collection of subgroups $H_s$, let $x,yinbigcap_sH_s$ be a pair of elements. Then $x,yin H_s$ for all $S$ and since $H_s<G$ then $xy^-1in H_s$ for every index $s$, so $xy^-1inbigcap_sH_s$, hence $bigcap_sH_s$ is a subgroup too.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          janmarqzjanmarqz

                          6,25741630




                          6,25741630



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177593%2fis-the-intersection-of-subgroups-a-subgroup-of-each-subgroup%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

                              Magento 2 disable Secret Key on URL's from terminal The Next CEO of Stack OverflowMagento 2 Shortcut/GUI tool to perform commandline tasks for windowsIn menu add configuration linkMagento oAuth : Generating access token and access secretMagento 2 security key issue in Third-Party API redirect URIPublic actions in admin controllersHow to Disable Cache in Custom WidgetURL Key not changing in Magento 2Product URL Key gets deleted when importing custom options - Magento 2Problem with reindex terminalMagento 2 - bin/magento Commands not working in Cpanel Terminal

                              Aasi (pallopeli) Navigointivalikko