Getting representations of the Lie group out of representations of its Lie algebra Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric algebra approach to Lorentz group representationsIsomorphisms of the Lorentz group and algebraIrreducible representations of the Lorentz Lie algebraRepresentation of Lie groups as exponentiations of algebra representations.Reference for rigorous treatment of the representation theory of the Lorentz groupClassification of representations of the lie algebra $mathfraku(2)$.Relation between representations of Lie Group and Lie AlgebraCorrespondence between representations of a Lie group and Lie algebra.Representations of $sl(2,C)$ as a real Lie algebraDifference between infinitesimal parameters of Lie algebra and group generators of Lie group

Should man-made satellites feature an intelligent inverted "cow catcher"?

Why does BitLocker not use RSA?

The Nth Gryphon Number

Russian equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

What are some likely causes to domain member PC losing contact to domain controller?

How to ask rejected full-time candidates to apply to teach individual courses?

How do Java 8 default methods hеlp with lambdas?

How does the body cool itself in a stillsuit?

Any stored/leased 737s that could substitute for grounded MAXs?

Is this Kuo-toa homebrew race balanced?

How to name indistinguishable henchmen in a screenplay?

Determine whether an integer is a palindrome

One-one communication

Why did Bronn offer to be Tyrion Lannister's champion in trial by combat?

How to make an animal which can only breed for a certain number of generations?

Why is there so little support for joining EFTA in the British parliament?

Does the main washing effect of soap come from foam?

Vertical ranges of Column Plots in 12

Inverse square law not accurate for non-point masses?

Was the pager message from Nick Fury to Captain Marvel unnecessary?

Does a random sequence of vectors span a Hilbert space?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

Getting representations of the Lie group out of representations of its Lie algebra

Why are two-digit numbers in Jonathan Swift's "Gulliver's Travels" (1726) written in "German style"?



Getting representations of the Lie group out of representations of its Lie algebra



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Geometric algebra approach to Lorentz group representationsIsomorphisms of the Lorentz group and algebraIrreducible representations of the Lorentz Lie algebraRepresentation of Lie groups as exponentiations of algebra representations.Reference for rigorous treatment of the representation theory of the Lorentz groupClassification of representations of the lie algebra $mathfraku(2)$.Relation between representations of Lie Group and Lie AlgebraCorrespondence between representations of a Lie group and Lie algebra.Representations of $sl(2,C)$ as a real Lie algebraDifference between infinitesimal parameters of Lie algebra and group generators of Lie group










2












$begingroup$


This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



For instance, in Peskin's QFT book:




It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




The same thing is done in countless other books.



Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



$$mathscrD(exp theta X)=exp theta D(X).$$



Now, this seems to be very subtle.



In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?










share|cite|improve this question









$endgroup$
















    2












    $begingroup$


    This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



    In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



    But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



    For instance, in Peskin's QFT book:




    It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




    The same thing is done in countless other books.



    Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



    In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



    $$mathscrD(exp theta X)=exp theta D(X).$$



    Now, this seems to be very subtle.



    In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



    Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



    My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



    Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?










    share|cite|improve this question









    $endgroup$














      2












      2








      2





      $begingroup$


      This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



      In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



      But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



      For instance, in Peskin's QFT book:




      It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




      The same thing is done in countless other books.



      Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



      In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



      $$mathscrD(exp theta X)=exp theta D(X).$$



      Now, this seems to be very subtle.



      In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



      Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



      My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



      Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?










      share|cite|improve this question









      $endgroup$




      This is something that is usually done in QFT and that bothers me a lot because it seems to be done without much caution.



      In QFT when classifying fields one looks for the irreducible representations of the proper orthochronous Lorentz group $SO_e^+(1,3)$.



      But to do so what one does in practice is: look for representations of the Lie algebra $mathfrakso(1,3)$ and then exponentiate.



      For instance, in Peskin's QFT book:




      It is generally true that one can find matrix representations of a continuous group by finding matrix representations of the generators of the group, then exponentiating these infinitesimal transformations.




      The same thing is done in countless other books.



      Now I do agree that if we have a representation of $G$ we can get one of $mathfrakg$ differentiating at the identity. Here one is doing the reverse!



      In practice what is doing is: find a representation of $mathfrakso(1,3)$ on a vector space $V$, then exponentiate it to get a representation of $SO_e^+(1,3)$. I think one way to write it would be as follows, let $D : mathfrakso(1,3)to operatornameEnd(V)$ be the representation of the algebra, define $mathscrD : SO_e^+(1,3)to GL(V)$



      $$mathscrD(exp theta X)=exp theta D(X).$$



      Now, this seems to be very subtle.



      In general the exponential $exp : mathfrakgto G$ is not surjective. Even if it is, I think it need not be injective.



      Also I've heard there is one very important and very subtle connection between $exp(mathfrakg)$ and the universal cover of $G$.



      My question here is: how to understand this procedure Physicists do more rigorously? In general this process of "getting representations of $G$ out of representations of $mathfrakg$ by exponentiation" can be done, or it really just gives representations of $exp(mathfrakg)?



      Or in the end physicists are allowed to do this just because very luckilly in this case $exp$ is surjective onto $SO_e^+(1,3)$?







      representation-theory lie-groups lie-algebras mathematical-physics quantum-field-theory






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      user1620696user1620696

      11.8k742119




      11.8k742119




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            43 mins ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196500%2fgetting-representations-of-the-lie-group-out-of-representations-of-its-lie-algeb%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            43 mins ago















          4












          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            43 mins ago













          4












          4








          4





          $begingroup$

          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.






          share|cite|improve this answer









          $endgroup$



          The exponential map doesn't need to be surjective. If $G$ is connected the exponential map is surjective onto a neighborhood of the identity, and since a neighborhood of the identity of a connected topological group generates it, once you know what a representation does to a neighborhood of the identity, that determines what it does everywhere.



          However, in general $G$ needs to be simply connected. That is, exponential in general provides an equivalence between representations of a finite-dimensional Lie algebra $mathfrakg$ and representations of the unique simply connected Lie group $G$ with Lie algebra $mathfrakg$. The proper orthochronous Lorentz group is not simply connected; its universal cover is $SL_2(mathbbC)$. This means that not all representations of $mathfrakso(1, 3)$ exponentiate to representations of the proper orthochronous Lorentz group; some exponentiate to projective representations. As far as I know this is mostly fine for quantum, and so physicists don't seem to worry much about the distinction in practice.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          Qiaochu YuanQiaochu Yuan

          282k32599946




          282k32599946











          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            43 mins ago
















          • $begingroup$
            There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
            $endgroup$
            – paul garrett
            43 mins ago















          $begingroup$
          There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
          $endgroup$
          – paul garrett
          43 mins ago




          $begingroup$
          There's certainly also the issue of not-finite-dimensional representations... Wallach's and Casselman's "globalization" functors show two opposite extremes of adjoints to the functor that takes $G$ repns $V$ to $mathfrak g,K$ modules of smooth vectors $V^infty$.
          $endgroup$
          – paul garrett
          43 mins ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3196500%2fgetting-representations-of-the-lie-group-out-of-representations-of-its-lie-algeb%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can not update quote_id field of “quote_item” table magento 2Magento 2.1 - We can't remove the item. (Shopping Cart doesnt allow us to remove items before becomes empty)Add value for custom quote item attribute using REST apiREST API endpoint v1/carts/cartId/items always returns error messageCorrect way to save entries to databaseHow to remove all associated quote objects of a customer completelyMagento 2 - Save value from custom input field to quote_itemGet quote_item data using quote id and product id filter in Magento 2How to set additional data to quote_item table from controller in Magento 2?What is the purpose of additional_data column in quote_item table in magento2Set Custom Price to Quote item magento2 from controller

          Magento 2 disable Secret Key on URL's from terminal The Next CEO of Stack OverflowMagento 2 Shortcut/GUI tool to perform commandline tasks for windowsIn menu add configuration linkMagento oAuth : Generating access token and access secretMagento 2 security key issue in Third-Party API redirect URIPublic actions in admin controllersHow to Disable Cache in Custom WidgetURL Key not changing in Magento 2Product URL Key gets deleted when importing custom options - Magento 2Problem with reindex terminalMagento 2 - bin/magento Commands not working in Cpanel Terminal

          Aasi (pallopeli) Navigointivalikko