Einstein metrics on spheresSmooth Poincaré Conjecturerescaled metric quantities on rescaling metricsReversing the Ricci flowThoughts about sectional curvatureEasy solution to Yamabe problem for surfacesShowing that Ricci curvature of round unit sphere $(S^n,g_0)$ is $Ric(g_0)=(n-1)g_0$Uniformization of metrics vs. uniformization of Riemann surfacesCounterexample to Gunther Theorem when assuming only a Ricci curvature upper boundPointwise conformal vs. conformally diffeomorphic metrics in dimension 2Upper volume bounds for submanifolds

Is there a name of the flying bionic bird?

Are cabin dividers used to "hide" the flex of the airplane?

Why airport relocation isn't done gradually?

Finding files for which a command fails

Ideas for 3rd eye abilities

Pristine Bit Checking

I see my dog run

How to deal with fear of taking dependencies

Symmetry in quantum mechanics

How did the USSR manage to innovate in an environment characterized by government censorship and high bureaucracy?

Does bootstrapped regression allow for inference?

Could a US political party gain complete control over the government by removing checks & balances?

Why do UK politicians seemingly ignore opinion polls on Brexit?

What happens when a metallic dragon and a chromatic dragon mate?

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

Is it wise to focus on putting odd beats on left when playing double bass drums?

What is GPS' 19 year rollover and does it present a cybersecurity issue?

Where else does the Shulchan Aruch quote an authority by name?

Lied on resume at previous job

How can I fix this gap between bookcases I made?

How to make payment on the internet without leaving a money trail?

Need help identifying/translating a plaque in Tangier, Morocco

New order #4: World

Re-submission of rejected manuscript without informing co-authors



Einstein metrics on spheres


Smooth Poincaré Conjecturerescaled metric quantities on rescaling metricsReversing the Ricci flowThoughts about sectional curvatureEasy solution to Yamabe problem for surfacesShowing that Ricci curvature of round unit sphere $(S^n,g_0)$ is $Ric(g_0)=(n-1)g_0$Uniformization of metrics vs. uniformization of Riemann surfacesCounterexample to Gunther Theorem when assuming only a Ricci curvature upper boundPointwise conformal vs. conformally diffeomorphic metrics in dimension 2Upper volume bounds for submanifolds













2












$begingroup$


I've got a couple of quick questions that came up after reading a peculiar statement in some article. The sentence says something like "... is the $N$-dimensional sphere with constant Ricci curvature equal to $K$...", and the questions are something like:



For $(mathbbS^n,g)$ the sphere with its standard differential structure and $some$ Riemannian metric on it,



1.a. Does $g$ being an Einstein metric implies that it is actually the round metric (up to some normalization constant)?



1.b. Does the answer change if we change to an alternative differential structure (when possible)?



I guess this shouldn't be true, so in this case



2. Is there an intuitive way to understand how one could construct a metric which is Einstein but not of constant curvature?



Anyways, I thank you all in advance for sharing your knowledge.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    I've got a couple of quick questions that came up after reading a peculiar statement in some article. The sentence says something like "... is the $N$-dimensional sphere with constant Ricci curvature equal to $K$...", and the questions are something like:



    For $(mathbbS^n,g)$ the sphere with its standard differential structure and $some$ Riemannian metric on it,



    1.a. Does $g$ being an Einstein metric implies that it is actually the round metric (up to some normalization constant)?



    1.b. Does the answer change if we change to an alternative differential structure (when possible)?



    I guess this shouldn't be true, so in this case



    2. Is there an intuitive way to understand how one could construct a metric which is Einstein but not of constant curvature?



    Anyways, I thank you all in advance for sharing your knowledge.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      I've got a couple of quick questions that came up after reading a peculiar statement in some article. The sentence says something like "... is the $N$-dimensional sphere with constant Ricci curvature equal to $K$...", and the questions are something like:



      For $(mathbbS^n,g)$ the sphere with its standard differential structure and $some$ Riemannian metric on it,



      1.a. Does $g$ being an Einstein metric implies that it is actually the round metric (up to some normalization constant)?



      1.b. Does the answer change if we change to an alternative differential structure (when possible)?



      I guess this shouldn't be true, so in this case



      2. Is there an intuitive way to understand how one could construct a metric which is Einstein but not of constant curvature?



      Anyways, I thank you all in advance for sharing your knowledge.










      share|cite|improve this question











      $endgroup$




      I've got a couple of quick questions that came up after reading a peculiar statement in some article. The sentence says something like "... is the $N$-dimensional sphere with constant Ricci curvature equal to $K$...", and the questions are something like:



      For $(mathbbS^n,g)$ the sphere with its standard differential structure and $some$ Riemannian metric on it,



      1.a. Does $g$ being an Einstein metric implies that it is actually the round metric (up to some normalization constant)?



      1.b. Does the answer change if we change to an alternative differential structure (when possible)?



      I guess this shouldn't be true, so in this case



      2. Is there an intuitive way to understand how one could construct a metric which is Einstein but not of constant curvature?



      Anyways, I thank you all in advance for sharing your knowledge.







      differential-geometry riemannian-geometry






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 10 hours ago









      Michael Albanese

      64.6k1599315




      64.6k1599315










      asked 10 hours ago









      Bruce WayneBruce Wayne

      448213




      448213




















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          No, there are Einstein metrics on spheres which are not rescalings of the round metric. See the introduction of Einstein metrics on spheres by Boyer, Galicki, & Kollár for some constructions. However, as far as I am aware, there are no known examples of Einstein metrics with non-positive Einstein constant. In particular, it is an open question as to whether $S^n$ admits a Ricci-flat metric for $n geq 4$.



          If we consider exotic spheres, they do not admit a 'round metric' or any metric of constant curvature, so I'm not sure what is meant by this. However, there are examples of Einstein metrics on exotic spheres, see Einstein Metrics on Exotic Spheres in Dimensions 7, 11, and 15 by Boyer, Galicki, Kollár, & Thomas for example. Note however that there are some exotic spheres which, if they admit Einstein metrics, must have negative Einstein constant.



          Finding Einstein metrics which are not constant curvature is, in general, a hard thing to do and an area of active research.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            great, thanks! Yeah, of course you are right, question 1b doesn't make sense as stated. I wrote it fast, sorry!
            $endgroup$
            – Bruce Wayne
            9 hours ago











          Your Answer





          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179975%2feinstein-metrics-on-spheres%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          No, there are Einstein metrics on spheres which are not rescalings of the round metric. See the introduction of Einstein metrics on spheres by Boyer, Galicki, & Kollár for some constructions. However, as far as I am aware, there are no known examples of Einstein metrics with non-positive Einstein constant. In particular, it is an open question as to whether $S^n$ admits a Ricci-flat metric for $n geq 4$.



          If we consider exotic spheres, they do not admit a 'round metric' or any metric of constant curvature, so I'm not sure what is meant by this. However, there are examples of Einstein metrics on exotic spheres, see Einstein Metrics on Exotic Spheres in Dimensions 7, 11, and 15 by Boyer, Galicki, Kollár, & Thomas for example. Note however that there are some exotic spheres which, if they admit Einstein metrics, must have negative Einstein constant.



          Finding Einstein metrics which are not constant curvature is, in general, a hard thing to do and an area of active research.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            great, thanks! Yeah, of course you are right, question 1b doesn't make sense as stated. I wrote it fast, sorry!
            $endgroup$
            – Bruce Wayne
            9 hours ago















          5












          $begingroup$

          No, there are Einstein metrics on spheres which are not rescalings of the round metric. See the introduction of Einstein metrics on spheres by Boyer, Galicki, & Kollár for some constructions. However, as far as I am aware, there are no known examples of Einstein metrics with non-positive Einstein constant. In particular, it is an open question as to whether $S^n$ admits a Ricci-flat metric for $n geq 4$.



          If we consider exotic spheres, they do not admit a 'round metric' or any metric of constant curvature, so I'm not sure what is meant by this. However, there are examples of Einstein metrics on exotic spheres, see Einstein Metrics on Exotic Spheres in Dimensions 7, 11, and 15 by Boyer, Galicki, Kollár, & Thomas for example. Note however that there are some exotic spheres which, if they admit Einstein metrics, must have negative Einstein constant.



          Finding Einstein metrics which are not constant curvature is, in general, a hard thing to do and an area of active research.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            great, thanks! Yeah, of course you are right, question 1b doesn't make sense as stated. I wrote it fast, sorry!
            $endgroup$
            – Bruce Wayne
            9 hours ago













          5












          5








          5





          $begingroup$

          No, there are Einstein metrics on spheres which are not rescalings of the round metric. See the introduction of Einstein metrics on spheres by Boyer, Galicki, & Kollár for some constructions. However, as far as I am aware, there are no known examples of Einstein metrics with non-positive Einstein constant. In particular, it is an open question as to whether $S^n$ admits a Ricci-flat metric for $n geq 4$.



          If we consider exotic spheres, they do not admit a 'round metric' or any metric of constant curvature, so I'm not sure what is meant by this. However, there are examples of Einstein metrics on exotic spheres, see Einstein Metrics on Exotic Spheres in Dimensions 7, 11, and 15 by Boyer, Galicki, Kollár, & Thomas for example. Note however that there are some exotic spheres which, if they admit Einstein metrics, must have negative Einstein constant.



          Finding Einstein metrics which are not constant curvature is, in general, a hard thing to do and an area of active research.






          share|cite|improve this answer











          $endgroup$



          No, there are Einstein metrics on spheres which are not rescalings of the round metric. See the introduction of Einstein metrics on spheres by Boyer, Galicki, & Kollár for some constructions. However, as far as I am aware, there are no known examples of Einstein metrics with non-positive Einstein constant. In particular, it is an open question as to whether $S^n$ admits a Ricci-flat metric for $n geq 4$.



          If we consider exotic spheres, they do not admit a 'round metric' or any metric of constant curvature, so I'm not sure what is meant by this. However, there are examples of Einstein metrics on exotic spheres, see Einstein Metrics on Exotic Spheres in Dimensions 7, 11, and 15 by Boyer, Galicki, Kollár, & Thomas for example. Note however that there are some exotic spheres which, if they admit Einstein metrics, must have negative Einstein constant.



          Finding Einstein metrics which are not constant curvature is, in general, a hard thing to do and an area of active research.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 9 hours ago

























          answered 10 hours ago









          Michael AlbaneseMichael Albanese

          64.6k1599315




          64.6k1599315











          • $begingroup$
            great, thanks! Yeah, of course you are right, question 1b doesn't make sense as stated. I wrote it fast, sorry!
            $endgroup$
            – Bruce Wayne
            9 hours ago
















          • $begingroup$
            great, thanks! Yeah, of course you are right, question 1b doesn't make sense as stated. I wrote it fast, sorry!
            $endgroup$
            – Bruce Wayne
            9 hours ago















          $begingroup$
          great, thanks! Yeah, of course you are right, question 1b doesn't make sense as stated. I wrote it fast, sorry!
          $endgroup$
          – Bruce Wayne
          9 hours ago




          $begingroup$
          great, thanks! Yeah, of course you are right, question 1b doesn't make sense as stated. I wrote it fast, sorry!
          $endgroup$
          – Bruce Wayne
          9 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3179975%2feinstein-metrics-on-spheres%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          HP P840 HDD RAID 5 many strange drive faiuresHP SmartArray P400: How to repair failed logical drive?Reusing Raid 5 Drive?reliably and automatically determine connection path of physical position of HDD from /dev/sdX device fileHow to replace failed drive in RAID 5 array in HP DL380 G4 serverQuestions on increasing RAID 5 arrayRaid 10, Logical device are missingHP Code 341 “Physical Drive State: Predictive failure. This physical drive is predicted to fail soon.”HPE 1.92TB SATA 6G Mixed Use SFF SSD very slow compared to SAS HDD HP disksHP drive array “ready for rebuild” (RAID5)Hard Disc Failure or RAID Glitch

          Jalkaväkirykmentti 49 (jatkosota) Sisällysluettelo Perustaminen | Keskittäminen | Komentaja(t) | Lähteet | NavigointivalikkoInfobox OKlaajentamalla

          Can Not View Content Blocks due to require.js error - Magento 2 theme change Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?get requirejs-config.js to load declared cdn's for jqueryOverride Magento/Checkout/view/frontend/web/js/view/shipping.js in custom theme not workingAdding Custom JS to Magento 2 Themerequire.js error on Magento 2Magento 2 require js throw errorMagento 2.1.2 regionUpdater js error on register.phtmlError loading popper.js on Magento 2 Theme (require js)requirejs error in my child themeIssue with bootstrap 4 in magento 2Magento 2 checkout page keeps on loading.In console,$.event.props is undefined in jquery.mobile.custom.js:44:2.How to clear that?Magento 2 Stuck on Checkout page