First Component in PCA Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)What do the first $k$ factors from factor analysis maximize?First principal component of 2D data forming a rectangle?Line that separates data partitioned by the first principal component of PCAWhy is linear regression different from PCA?Does the first principal component differ from simply computing the mean of all variables?Citation for total amount of variance explained in PCAQuiz: Determine first principal component from data-plotsIn PCA, is there an intuitive explanation for why the second principal component chosen must be orthogonal to the first component?PCA: How can the first principal component both maximize variance AND define the line that most closely fits the data?Principal component weights flipped after PCA

why doesn't university give past final exams' answers

How do Java 8 default methods hеlp with lambdas?

Proving that any solution to the differential equation of an oscillator can be written as a sum of sinusoids.

How do you cope with tons of web fonts when copying and pasting from web pages?

Does a random sequence of vectors span a Hilbert space?

Why not use the yoke to control yaw, as well as pitch and roll?

Does the universe have a fixed centre of mass?

Weaponising the Grasp-at-a-Distance spell

How do I say "this must not happen"?

Searching extreme points of polyhedron

The test team as an enemy of development? And how can this be avoided?

Why do C and C++ allow the expression (int) + 4*5?

Is there night in Alpha Complex?

Which types of prepositional phrase is "toward its employees" in Philosophy guiding the organization's policies towards its employees is not bad?

Any stored/leased 737s that could substitute for grounded MAXs?

Can gravitational waves pass through a black hole?

Are there any irrational/transcendental numbers for which the distribution of decimal digits is not uniform?

Is the Mordenkainen's Sword spell underpowered?

Is there a spell that can create a permanent fire?

Why does BitLocker not use RSA?

French equivalents of おしゃれは足元から (Every good outfit starts with the shoes)

How could a hydrazine and N2O4 cloud (or it's reactants) show up in weather radar?

How to name indistinguishable henchmen in a screenplay?

The Nth Gryphon Number



First Component in PCA



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)What do the first $k$ factors from factor analysis maximize?First principal component of 2D data forming a rectangle?Line that separates data partitioned by the first principal component of PCAWhy is linear regression different from PCA?Does the first principal component differ from simply computing the mean of all variables?Citation for total amount of variance explained in PCAQuiz: Determine first principal component from data-plotsIn PCA, is there an intuitive explanation for why the second principal component chosen must be orthogonal to the first component?PCA: How can the first principal component both maximize variance AND define the line that most closely fits the data?Principal component weights flipped after PCA



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








1












$begingroup$


I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



I didn't get what it is trying to say.










share|cite|improve this question







New contributor




user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$


















    1












    $begingroup$


    I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



    I didn't get what it is trying to say.










    share|cite|improve this question







    New contributor




    user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      1












      1








      1





      $begingroup$


      I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



      I didn't get what it is trying to say.










      share|cite|improve this question







      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I was doing the Andrew Ng's ML course, and one of the solutions mentioned The first principal component is aligned with the direction of maximal variance.



      I didn't get what it is trying to say.







      machine-learning pca






      share|cite|improve this question







      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 6 hours ago









      user3656142user3656142

      61




      61




      New contributor




      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      user3656142 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          Welcome to CV!



          PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.




          Consider this mock example:



          There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



          PCA






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "65"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            user3656142 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404334%2ffirst-component-in-pca%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Welcome to CV!



            PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.




            Consider this mock example:



            There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



            PCA






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              Welcome to CV!



              PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.




              Consider this mock example:



              There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



              PCA






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                Welcome to CV!



                PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.




                Consider this mock example:



                There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



                PCA






                share|cite|improve this answer









                $endgroup$



                Welcome to CV!



                PCA finds the linear combination of your original input variables that contains the largest possible variance among all input variables. This is the first principal component, and it will thus by definition "align with the direction of maximal variance". The second principal component is then a linear combination independent of the first PC, with the largest remaining variance, and so on.




                Consider this mock example:



                There are two input variables (bacterial colony size and relative expression of a fluorescent protein). However, it turns out that larger colonies express less fluorescent protein (i.e., the input variables are correlated). The first PC will then be in the direction of this combined variance of the two input variables, because this is the largest total variance that a linear combination can find. The second PC will do the same, but perpendicular to PC1.



                PCA







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 4 hours ago









                Frans RodenburgFrans Rodenburg

                3,6791529




                3,6791529




















                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.












                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.











                    user3656142 is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Cross Validated!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f404334%2ffirst-component-in-pca%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                    Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                    Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko