Fine Tuning of the UniverseFine Tuned UniverseRelationship between hierarchy problem and higgs fine tuning?Definition of Fine-TuningEarliest example of naturalness/fine-tuning argumentsMultiverse explanation of fine tuning of cosmic constantsCan dimensional regularization solve the fine-tuning problem?Are the fundamental constants of nature independent?Does the Peccei-Quinn (PQ) mechanism require fine-tuning?Why does the flatness problem (of the universe) present a fine tuning problem?Bare Cosmological Constant and Fine-Tuning Problem

Detecting if an element is found inside a container

Unreliable Magic - Is it worth it?

Pole-zeros of a real-valued causal FIR system

Escape a backup date in a file name

How did Arya survive the stabbing?

India just shot down a satellite from the ground. At what altitude range is the resulting debris field?

CREATE opcode: what does it really do?

Is exact Kanji stroke length important?

Proof of work - lottery approach

For a non-Jew, is there a punishment for not observing the 7 Noahide Laws?

Short story about space worker geeks who zone out by 'listening' to radiation from stars

How does it work when somebody invests in my business?

Do the temporary hit points from Reckless Abandon stack if I make multiple attacks on my turn?

How to run a prison with the smallest amount of guards?

What is paid subscription needed for in Mortal Kombat 11?

Sequence of Tenses: Translating the subjunctive

Is the destination of a commercial flight important for the pilot?

Do all network devices need to make routing decisions, regardless of communication across networks or within a network?

Fastening aluminum fascia to wooden subfascia

Anatomically Correct Strange Women In Ponds Distributing Swords

How does Loki do this?

Are student evaluations of teaching assistants read by others in the faculty?

Implement the Thanos sorting algorithm

Is there a problem with hiding "forgot password" until it's needed?



Fine Tuning of the Universe


Fine Tuned UniverseRelationship between hierarchy problem and higgs fine tuning?Definition of Fine-TuningEarliest example of naturalness/fine-tuning argumentsMultiverse explanation of fine tuning of cosmic constantsCan dimensional regularization solve the fine-tuning problem?Are the fundamental constants of nature independent?Does the Peccei-Quinn (PQ) mechanism require fine-tuning?Why does the flatness problem (of the universe) present a fine tuning problem?Bare Cosmological Constant and Fine-Tuning Problem













4












$begingroup$


I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.










share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    3 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    30 mins ago















4












$begingroup$


I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.










share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    3 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    30 mins ago













4












4








4





$begingroup$


I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.










share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I'm an A level student looking into the fine tuning of various constants.
Physicists explain the extensive effects that would happen if these constants were to be changed/different and hence, how this affects the probability of life existing. What I fail to understand is why, if these constants were to be different, life wouldn't adapt to these changes. If gravity was stronger, then wouldn't the general muscle mass/stability of life be greater through evolution in order to withstand a greater force? Or am I looking at it from the wrong perspective? Some clarification on this would be appreciated.







physical-constants time-evolution cosmological-constant fine-tuning






share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 4 hours ago









Samuel HunterSamuel Hunter

212




212




New contributor




Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Samuel Hunter is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    3 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    30 mins ago












  • 1




    $begingroup$
    It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
    $endgroup$
    – Dmitry Brant
    3 hours ago










  • $begingroup$
    Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
    $endgroup$
    – Chiral Anomaly
    30 mins ago







1




1




$begingroup$
It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
$endgroup$
– Dmitry Brant
3 hours ago




$begingroup$
It's more fundamental than that: if certain constants were different, it could prevent stars and planets from forming, much less allow liquid water to exist, and then allow for organic chemistry as we know it.
$endgroup$
– Dmitry Brant
3 hours ago












$begingroup$
Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
$endgroup$
– Chiral Anomaly
30 mins ago




$begingroup$
Some related references are cited in the introduction of "Preliminary Inconclusive Hint of Evidence Against Optimal Fine Tuning of the Cosmological Constant for Maximizing the Fraction of Baryons Becoming Life" (arxiv.org/abs/1101.2444)
$endgroup$
– Chiral Anomaly
30 mins ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    2 hours ago










Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);






Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469025%2ffine-tuning-of-the-universe%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    2 hours ago















4












$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    2 hours ago













4












4








4





$begingroup$

The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.






share|cite|improve this answer











$endgroup$



The variation you are talking about here would still be considered relatively 'fine-tuned', in the following sense:



If the strength of gravity was stronger by such an amount such that the processes that govern the formation of stars, planets, complex molecules, and life were relatively unchanged (in that they still take place in a recognizable fashion), then the strength of gravity must be quite similar to what we observe. If this were the case, yes, there is no reason that life might not develop to be a bit tougher.



However, such a difference would have to be very small indeed. Arguments about fine-tuning are based on the observation that even relatively small changes to certain constants would be enough to drastically change the make-up of the universe.



For example, Paul Davies notes that if the strong force were 2% stronger than it is, hydrogen would fuse to form diprotons as opposed to helium as it would be energetically favorable. This would drastically alter structure formation in the early universe, leading to a today where planets do not even exist, let alone weak or strong animals on them. I should note here that the 2% figure quoted by Davies may not be accurate, but this is the idea at play here.



In short, the problems from fine-tuning start to occur far before life would ever develop in the first place.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 3 hours ago

























answered 3 hours ago









gabegabe

12711




12711











  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    2 hours ago
















  • $begingroup$
    also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
    $endgroup$
    – JEB
    2 hours ago















$begingroup$
also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
$endgroup$
– JEB
2 hours ago




$begingroup$
also look at the triple $alpha$ process (en.wikipedia.org/wiki/Triple-alpha_process) which appears terribly fine tuned, and is the only way to make lots of carbon and oxygen, which are life's favorite elements.
$endgroup$
– JEB
2 hours ago










Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.









draft saved

draft discarded


















Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.












Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.











Samuel Hunter is a new contributor. Be nice, and check out our Code of Conduct.














Thanks for contributing an answer to Physics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f469025%2ffine-tuning-of-the-universe%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko