Advance Calculus Limit question The Next CEO of Stack OverflowLimit finding of an indeterminate formI need compute a rational limit that involves rootsComplex Limit Without L'hopital'sLimit of $x^2e^x $as $x$ approaches negative infinity without using L'hopital's ruleSolving limit of radicals without L'Hopital $lim_xto 64 dfracsqrt x - 8sqrt[3] x - 4 $Solve a limit without L'Hopital: $ lim_xto0 fracln(cos5x)ln(cos7x)$Limit question - L'Hopital's rule doesn't seem to workHow can I solve this limit without L'Hopital rule?Find a limit of a function W/OUT l'Hopital's rule.Compute $lim_x rightarrow 4 frac(2x^2 - 7x -4)(-x^2 + 8x - 16)$
Identify and count spells (Distinctive events within each group)
Incomplete cube
Gauss' Posthumous Publications?
My ex-girlfriend uses my Apple ID to login to her iPad, do I have to give her my Apple ID password to reset it?
Can a PhD from a non-TU9 German university become a professor in a TU9 university?
Is it possible to create a QR code using text?
What difference does it make matching a word with/without a trailing whitespace?
Could a dragon use its wings to swim?
What did the word "leisure" mean in late 18th Century usage?
Another proof that dividing by 0 does not exist -- is it right?
Shortening a title without changing its meaning
Is the offspring between a demon and a celestial possible? If so what is it called and is it in a book somewhere?
How seriously should I take size and weight limits of hand luggage?
Arrows in tikz Markov chain diagram overlap
Can this transistor (2N2222) take 6 V on emitter-base? Am I reading the datasheet incorrectly?
Planeswalker Ability and Death Timing
Can I hook these wires up to find the connection to a dead outlet?
How to pronounce fünf in 45
How can I prove that a state of equilibrium is unstable?
How exploitable/balanced is this homebrew spell: Spell Permanency?
Could you use a laser beam as a modulated carrier wave for radio signal?
That's an odd coin - I wonder why
Find the majority element, which appears more than half the time
Is a distribution that is normal, but highly skewed, considered Gaussian?
Advance Calculus Limit question
The Next CEO of Stack OverflowLimit finding of an indeterminate formI need compute a rational limit that involves rootsComplex Limit Without L'hopital'sLimit of $x^2e^x $as $x$ approaches negative infinity without using L'hopital's ruleSolving limit of radicals without L'Hopital $lim_xto 64 dfracsqrt x - 8sqrt[3] x - 4 $Solve a limit without L'Hopital: $ lim_xto0 fracln(cos5x)ln(cos7x)$Limit question - L'Hopital's rule doesn't seem to workHow can I solve this limit without L'Hopital rule?Find a limit of a function W/OUT l'Hopital's rule.Compute $lim_x rightarrow 4 frac(2x^2 - 7x -4)(-x^2 + 8x - 16)$
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
$endgroup$
add a comment |
$begingroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
$endgroup$
I'm trying to compute this limit without the use of L'Hopital's rule:
$$lim_x to 0^+ frac4^-1/x+4^1/x4^-1/x-4^1/x$$
I've been trying to multiply by the lcd and doing other creative stuff... anyone have any suggestions on theorems or techniques?
calculus limits limits-without-lhopital
calculus limits limits-without-lhopital
edited 6 hours ago
Foobaz John
22.9k41552
22.9k41552
asked 6 hours ago
Kevin CalderonKevin Calderon
563
563
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
add a comment |
$begingroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
$endgroup$
Write the limit as
$$
lim_xto 0+frac1+4^-2/x-1+4^-2/x
$$
and use the fact that
$$
lim_xto 0+frac-2x=-infty.
$$
to find that the limit equals $-1$.
answered 6 hours ago
Foobaz JohnFoobaz John
22.9k41552
22.9k41552
add a comment |
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
add a comment |
$begingroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
$endgroup$
A substitution can be helpful, as it transforms the expression into a rational function:
- Set $y=4^frac1x$ and consider $y to +infty$
begineqnarray* frac4^-1/x+4^1/x4^-1/x-4^1/x
& stackrely=4^frac1x= & fracfrac1y+yfrac1y-y \
& = & fracfrac1y^2+1frac1y^2-1 \
& stackrely to +inftylongrightarrow & frac0+10-1 = -1
endeqnarray*
answered 1 hour ago
trancelocationtrancelocation
13.5k1827
13.5k1827
add a comment |
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
add a comment |
$begingroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
$endgroup$
$$lim_xto 0^+dfrac4^-1/x+4^1/x4^-1/x-4^1/x=lim_xto 0^+dfrac4^-2/x+14^-2/x-1$$
Clearly as $xto 0^+$, $2/xto infty$. Since the power of $4$ is $-2/x$, it must go to $0$. Effectively we have $frac0+10-1=-1$. Hence the required limit is $-1$.
answered 37 mins ago
Paras KhoslaParas Khosla
2,758423
2,758423
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171288%2fadvance-calculus-limit-question%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown