Finding the error in an argumentChain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables

What is the fastest integer factorization to break RSA?

Processor speed limited at 0.4 Ghz

What Exploit Are These User Agents Trying to Use?

Mathematica command that allows it to read my intentions

Is this draw by repetition?

Theorists sure want true answers to this!

Do creatures with a listed speed of "0 ft., fly 30 ft. (hover)" ever touch the ground?

How obscure is the use of 令 in 令和?

Is it possible to create a QR code using text?

How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction

Does the Idaho Potato Commission associate potato skins with healthy eating?

Unlock My Phone! February 2018

Are British MPs missing the point, with these 'Indicative Votes'?

How to prevent "they're falling in love" trope

Can someone clarify Hamming's notion of important problems in relation to modern academia?

Fair gambler's ruin problem intuition

How does a refinance allow a mortgage to be repaid?

Avoiding the "not like other girls" trope?

Car headlights in a world without electricity

Why were 5.25" floppy drives cheaper than 8"?

Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?

Getting extremely large arrows with tikzcd

How do I exit BASH while loop using modulus operator?

Bullying boss launched a smear campaign and made me unemployable



Finding the error in an argument


Chain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables













4












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago















4












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago













4












4








4





$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$




If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.







calculus multivariable-calculus partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago







mathenthusiast

















asked 3 hours ago









mathenthusiastmathenthusiast

808




808











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago
















  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    3 hours ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    3 hours ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    3 hours ago















$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
3 hours ago





$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
3 hours ago





1




1




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
3 hours ago




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
3 hours ago












$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
3 hours ago




$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
3 hours ago










1 Answer
1






active

oldest

votes


















5












$begingroup$

Nothing wrong. Just change it into



$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



Actually, a better way to say this is that



$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



Where I have clearly written down the restriction $y=x^2$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    5












    $begingroup$

    Nothing wrong. Just change it into



    $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



    Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



    Actually, a better way to say this is that



    $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



    Where I have clearly written down the restriction $y=x^2$.






    share|cite|improve this answer









    $endgroup$

















      5












      $begingroup$

      Nothing wrong. Just change it into



      $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



      Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



      Actually, a better way to say this is that



      $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



      Where I have clearly written down the restriction $y=x^2$.






      share|cite|improve this answer









      $endgroup$















        5












        5








        5





        $begingroup$

        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.






        share|cite|improve this answer









        $endgroup$



        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        Holding ArthurHolding Arthur

        1,370417




        1,370417



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

            Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

            Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko