Proving inequality for positive definite matrix Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Eigenvalues of A+B where A is symmetric positive definite and B is diagonalA spectral inequality for positive-definite matrices Showing positive stability of a matrix constructed from a positive matrixCondition number after some “non standard” transformProve that matrix is positive definiteInequality between nuclear norm and operator norm for positive definite matricesStability of a matrix productInverse of a matrix and the inverse of its diagonalsMaximum rotation made by a symmetric positive definite matrix?Angle induced by inverse matrix

Proving inequality for positive definite matrix



Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Eigenvalues of A+B where A is symmetric positive definite and B is diagonalA spectral inequality for positive-definite matrices Showing positive stability of a matrix constructed from a positive matrixCondition number after some “non standard” transformProve that matrix is positive definiteInequality between nuclear norm and operator norm for positive definite matricesStability of a matrix productInverse of a matrix and the inverse of its diagonalsMaximum rotation made by a symmetric positive definite matrix?Angle induced by inverse matrix










2












$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x_2 geq fracx^T A xAx$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac^2 iff\ fracA^1/2x < frac^2^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < fracBy^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago
















2












$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x_2 geq fracx^T A xAx$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac^2 iff\ fracA^1/2x < frac^2^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < fracBy^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago














2












2








2





$begingroup$


For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x_2 geq fracx^T A xAx$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$










share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




For a positive definite diagonal matrix $A$, I want to prove that for any $x$:



$$fracx^T sqrtA x_2 geq fracx^T A xAx$$



So far I cannot find any counterexamples, and it intuitively makes sense since the $sqrtcdot$ operator should bring the eigenvalues of $A$ closer to $1$, but I can't prove this.




EDIT: changed $>$ to $geq$







linear-algebra






share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 20 mins ago









B Merlot

725




725






New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









ReginaldReginald

186




186




New contributor




Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Reginald is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac^2 iff\ fracA^1/2x < frac^2^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < fracBy^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago













  • 3




    $begingroup$
    A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac^2 iff\ fracA^1/2x < frac^2^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < fracBy^2 iff |B^3y|,,|y|^2 < |By|^3 $$
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    Also, note that we fail to have strict inequality when $A = I$, for instance.
    $endgroup$
    – Omnomnomnom
    1 hour ago






  • 1




    $begingroup$
    More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
    $endgroup$
    – Omnomnomnom
    37 mins ago







  • 1




    $begingroup$
    Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
    $endgroup$
    – Omnomnomnom
    31 mins ago








3




3




$begingroup$
A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac^2 iff\ fracA^1/2x < frac^2^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < fracBy^2 iff |B^3y|,,|y|^2 < |By|^3 $$
$endgroup$
– Omnomnomnom
1 hour ago




$begingroup$
A potentially helpful observation: Note that if $M$ is positive semidefinite, we have $x^TMx = |sqrtMx|^2$. Thus, we can rewrite your equation as $$ frac^2A^1/2x < frac^2 iff\ fracA^1/2x < frac^2^2 $$ with $B = A^1/4$ and $y = A^1/4y$, we can rewrite the above as $$ fracB^3y < fracBy^2 iff |B^3y|,,|y|^2 < |By|^3 $$
$endgroup$
– Omnomnomnom
1 hour ago




1




1




$begingroup$
Also, note that we fail to have strict inequality when $A = I$, for instance.
$endgroup$
– Omnomnomnom
1 hour ago




$begingroup$
Also, note that we fail to have strict inequality when $A = I$, for instance.
$endgroup$
– Omnomnomnom
1 hour ago




1




1




$begingroup$
More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
$endgroup$
– Omnomnomnom
37 mins ago





$begingroup$
More thoughts that are insufficient for an answer: Since both sides scale with $|y|$, it suffices to consider the inequality in the case that $|y| = 1$. That is: $$ |B^3y| leq |By|^3 $$ To that end: consider $$ min |By|^6 - |B^3y|^2 quad textst quad |y|=1 $$ Let $f(y) = |By|^6 - |B^3y|^2$, and let $g(y) = |y|^2$. We compute the Lagrangian $$ 2B^2(3|By|^4 I - lambda B^4)y $$ Now, $B$ positive definite. So, setting the Lagrangian to zero yields $$ (3|By|^4 I - lambda B^4)y = 0 implies left(fracBylambda I - B^4right)y = 0 $$
$endgroup$
– Omnomnomnom
37 mins ago





1




1




$begingroup$
Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
$endgroup$
– Omnomnomnom
31 mins ago





$begingroup$
Applying the Hölder-von Neumann inequality yields $$ |By|^2 = operatornametr[B^2yy^T] leq operatornametr[B^3]^1/1.5operatornametr[(yy^T)^3]^1/3 = operatornametr[B^3]^2/3|y|^2/3 $$ which is close to what we're looking for, but not quite there
$endgroup$
– Omnomnomnom
31 mins ago











1 Answer
1






active

oldest

votes


















4












$begingroup$

Your inequality says



$$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

or after a simple transformation
$$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
left(sumlambda_j^2x_j^2right)^1/3$$

And this is Holder's inequality with
$p=3/2$ and $q=3$. The strict inequality does not always hold.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "504"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    Reginald is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328694%2fproving-inequality-for-positive-definite-matrix%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Your inequality says



    $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
    fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

    or after a simple transformation
    $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
    left(sumlambda_j^2x_j^2right)^1/3$$

    And this is Holder's inequality with
    $p=3/2$ and $q=3$. The strict inequality does not always hold.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      Your inequality says



      $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
      fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

      or after a simple transformation
      $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
      left(sumlambda_j^2x_j^2right)^1/3$$

      And this is Holder's inequality with
      $p=3/2$ and $q=3$. The strict inequality does not always hold.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Your inequality says



        $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
        fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

        or after a simple transformation
        $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
        left(sumlambda_j^2x_j^2right)^1/3$$

        And this is Holder's inequality with
        $p=3/2$ and $q=3$. The strict inequality does not always hold.






        share|cite|improve this answer









        $endgroup$



        Your inequality says



        $$fracsumsqrtlambda_jx_j^2left(sumlambda_j x_j^2right)^1/2geq
        fracsumlambda_jx_j^2left(sumlambda_j^2x_j^2right)^1/2,$$

        or after a simple transformation
        $$sumlambda_j x_j^2leqleft(sumsqrtlambda_jx_j^2right)^2/3
        left(sumlambda_j^2x_j^2right)^1/3$$

        And this is Holder's inequality with
        $p=3/2$ and $q=3$. The strict inequality does not always hold.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 30 mins ago









        Alexandre EremenkoAlexandre Eremenko

        51.7k6144263




        51.7k6144263




















            Reginald is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            Reginald is a new contributor. Be nice, and check out our Code of Conduct.












            Reginald is a new contributor. Be nice, and check out our Code of Conduct.











            Reginald is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f328694%2fproving-inequality-for-positive-definite-matrix%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

            Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

            Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko