The answer of a series with complex variable analysis Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do we know Taylor's Series works with complex numbers?Representing a function as a real part of a complex variable?Computing an Integral Using Complex AnalysisFourier series without Fourier analysis techniquescomplex analysis - differentiabiliitySeries Expanding a Function: Complex Answer?complex analysis exponential series evaluationUsing complex variables to find sums of Fourier seriesExpansion of geometric progression of complex variable in polar coordinatesComplex numbers bijection when solving a series

Getting out of while loop on console

The Nth Gryphon Number

How to change the tick of the color bar legend to black

How were pictures turned from film to a big picture in a picture frame before digital scanning?

New Order #6: Easter Egg

Is there public access to the Meteor Crater in Arizona?

Did Mueller's report provide an evidentiary basis for the claim of Russian govt election interference via social media?

Is openssl rand command cryptographically secure?

How to align enumerate environment inside description environment

"klopfte jemand" or "jemand klopfte"?

Co-worker has annoying ringtone

A proverb that is used to imply that you have unexpectedly faced a big problem

How do living politicians protect their readily obtainable signatures from misuse?

Would color changing eyes affect vision?

AppleTVs create a chatty alternate WiFi network

Monty Hall Problem-Probability Paradox

Wrapping text with mathclap

GDP with Intermediate Production

How can I prevent/balance waiting and turtling as a response to cooldown mechanics

Project Euler #1 in C++

What does Turing mean by this statement?

My mentor says to set image to Fine instead of RAW — how is this different from JPG?

Why weren't discrete x86 CPUs ever used in game hardware?

Is it dangerous to install hacking tools on my private linux machine?



The answer of a series with complex variable analysis



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)How do we know Taylor's Series works with complex numbers?Representing a function as a real part of a complex variable?Computing an Integral Using Complex AnalysisFourier series without Fourier analysis techniquescomplex analysis - differentiabiliitySeries Expanding a Function: Complex Answer?complex analysis exponential series evaluationUsing complex variables to find sums of Fourier seriesExpansion of geometric progression of complex variable in polar coordinatesComplex numbers bijection when solving a series










2












$begingroup$


We have a series as



$cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



$U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    We have a series as



    $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



    How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



    $U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      We have a series as



      $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



      How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



      $U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$










      share|cite|improve this question











      $endgroup$




      We have a series as



      $cos(theta)+cos(theta+alpha)+cos(theta+2alpha)+...+cos(theta+nalpha)=U$



      How can we make use of complex variable analysis to arrive at the term below which is equivalent to the above series?



      $U=fracsin(fracn+12alpha)sin(frac12alpha)cos(theta+frac12nalpha)$







      sequences-and-series complex-analysis complex-numbers






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 35 mins ago









      John Doe

      12.1k11340




      12.1k11340










      asked 1 hour ago









      UnbelievableUnbelievable

      1163




      1163




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$






                share|cite|improve this answer









                $endgroup$



                Use the fact that this is almost a geometric series. $$beginalignU&=mathfrak R[e^itheta +e^itheta+ialpha+cdots+e^itheta+inalpha]\&=mathfrak Rleft[e^ithetasum_j=0^n e^ijalpharight]\&=mathfrak Rleft[e^ithetafrac1-e^i(n+1)alpha1-e^ialpharight]\&=mathfrak Rleft[e^ithetafrace^-i(n+1)alpha/2-e^i(n+1)alpha/2e^-ialpha/2-e^ialpha/2e^inalpha/2right]\&=mathfrak Rleft[e^i(nalpha/2+theta)fracsin[(n+1)alpha/2]sin[alpha/2]right]\&=cos(theta+tfracnalpha2)fracsinleft(frac12(n+1)alpharight)sinleft(frac12alpharight)endalign$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 37 mins ago









                dialogdialog

                997




                997



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195401%2fthe-answer-of-a-series-with-complex-variable-analysis%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                    Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                    Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko