Proving by induction of n. Is this correct until this point?prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^3$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_k=1^n (k+1)2^k = n2^n+1 $5. Prove by induction on $n$ that $sumlimits_k=1^n frac kk+1 leq n - frac1n+1$Prove by induction on n that $sumlimits_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1$Prove by induction on n that $sumlimits_k=1^n frac 2^kk leq 2^n$

Can a Gentile theist be saved?

Invariance of results when scaling explanatory variables in logistic regression, is there a proof?

Simple image editor tool to draw a simple box/rectangle in an existing image

Partial sums of primes

Did US corporations pay demonstrators in the German demonstrations against article 13?

Can the harmonic series explain the origin of the major scale?

Organic chemistry Iodoform Reaction

The One-Electron Universe postulate is true - what simple change can I make to change the whole universe?

Could solar power be utilized and substitute coal in the 19th century?

What does 사자 in this picture means?

Is a naturally all "male" species possible?

Adding empty element to declared container without declaring type of element

What to do when my ideas aren't chosen, when I strongly disagree with the chosen solution?

How can I raise concerns with a new DM about XP splitting?

Stereotypical names

Hostile work environment after whistle-blowing on coworker and our boss. What do I do?

How can a jailer prevent the Forge Cleric's Artisan's Blessing from being used?

Golf game boilerplate

How will losing mobility of one hand affect my career as a programmer?

Is exact Kanji stroke length important?

Why does this part of the Space Shuttle launch pad seem to be floating in air?

A workplace installs custom certificates on personal devices, can this be used to decrypt HTTPS traffic?

Would it be legal for a US State to ban exports of a natural resource?

Visiting the UK as unmarried couple



Proving by induction of n. Is this correct until this point?


prove inequality by induction — Discrete mathProve $25^n>6^n$ using inductionTrying to simplify an expression for an induction proof.Induction on summation inequality stuck on Induction stepProve by Induction: Summation of Factorial (n! * n)Prove that $n! > n^3$ for every integer $n ge 6$ using inductionProving by induction on $n$ that $sum limits_k=1^n (k+1)2^k = n2^n+1 $5. Prove by induction on $n$ that $sumlimits_k=1^n frac kk+1 leq n - frac1n+1$Prove by induction on n that $sumlimits_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1$Prove by induction on n that $sumlimits_k=1^n frac 2^kk leq 2^n$













4












$begingroup$



$$
sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
$$




Base Case:



I did $n = 1$, so..



LHS-



$$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



RHS-



$$frac12 - frac1(n+1)2^n+1 = frac38$$



so LHS = RHS



Inductive case-



LHS for $n+1$



$$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



and then I think that you can use inductive hypothesis to change it to the form of
$$
frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
$$



and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



$$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



$$=$$



$$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



$$=$$



$$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



then put it back in with the rest of the equation, bringing me to



$$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



then



$$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



and



$$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



$$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



which I think simplifies down to this after factoring out a $2^n$ from the numerator?



$$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



canceling out $2^n$



$$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



and I'm stuck, please help!










share|cite|improve this question









$endgroup$
















    4












    $begingroup$



    $$
    sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
    $$




    Base Case:



    I did $n = 1$, so..



    LHS-



    $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



    RHS-



    $$frac12 - frac1(n+1)2^n+1 = frac38$$



    so LHS = RHS



    Inductive case-



    LHS for $n+1$



    $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



    and then I think that you can use inductive hypothesis to change it to the form of
    $$
    frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
    $$



    and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



    $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



    $$=$$



    $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



    $$=$$



    $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



    then put it back in with the rest of the equation, bringing me to



    $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



    then



    $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



    and



    $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



    $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



    which I think simplifies down to this after factoring out a $2^n$ from the numerator?



    $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



    canceling out $2^n$



    $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



    and I'm stuck, please help!










    share|cite|improve this question









    $endgroup$














      4












      4








      4


      1



      $begingroup$



      $$
      sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



      RHS-



      $$frac12 - frac1(n+1)2^n+1 = frac38$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
      $$



      and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



      $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



      $$=$$



      $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



      $$=$$



      $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then put it back in with the rest of the equation, bringing me to



      $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then



      $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



      and



      $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



      $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



      which I think simplifies down to this after factoring out a $2^n$ from the numerator?



      $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



      canceling out $2^n$



      $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



      and I'm stuck, please help!










      share|cite|improve this question









      $endgroup$





      $$
      sum_k=1^n frac k+2k(k+1)2^k+1 = frac12 - frac1(n+1)2^n+1
      $$




      Base Case:



      I did $n = 1$, so..



      LHS-



      $$sum_k=1^n frac k+2k(k+1)2^k+1 = frac38$$



      RHS-



      $$frac12 - frac1(n+1)2^n+1 = frac38$$



      so LHS = RHS



      Inductive case-



      LHS for $n+1$



      $$sum_k=1^n+1 frac k+2k(k+1)2^k+1 +frac n+3(n+1)(n+2)2^n+2$$



      and then I think that you can use inductive hypothesis to change it to the form of
      $$
      frac12 - frac1(n+1)2^n+1 +frac n+3(n+1)(n+2)2^n+2
      $$



      and then I broke up $frac n+3(n+1)(n+2)2^n+2$ into



      $$frac2(n+2)-(n+1)(n+1)(n+2)2^n+2$$



      $$=$$



      $$frac2(n+1)2^n+2 - frac1(n+2)2^n+2$$



      $$=$$



      $$frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then put it back in with the rest of the equation, bringing me to



      $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2$$



      then



      $$frac12 -frac2(n+1)2^n+1 - frac1(n+2)2^n+2$$



      and



      $$frac12 -frac1(n+1)2^n - frac1(n+2)2^n+2$$



      $$frac12 -frac(n+2)2^n+2 - (n+1)2^n(n+1)(n+2)2^2n+2 $$



      which I think simplifies down to this after factoring out a $2^n$ from the numerator?



      $$frac12 -frac2^n((n+2)2^2 - (n+1))(n+1)(n+2)2^2n+2 $$



      canceling out $2^n$



      $$frac12 -frac(3n-7)(n+1)(n+2)2^n+2 $$



      and I'm stuck, please help!







      discrete-mathematics induction






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 4 hours ago









      BrownieBrownie

      1927




      1927




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          Your error is just after the sixth step from the bottom:



          $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



          Then you are done.



          You accidentally added the two middle terms instead of subtracting.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Using a telescoping sum, we get
            $$
            beginalign
            sum_k=1^nfrack+2k(k+1)2^k+1
            &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
            &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
            &=frac12-frac1(n+1)2^n+1
            endalign
            $$






            share|cite|improve this answer









            $endgroup$












              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              Your error is just after the sixth step from the bottom:



              $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



              Then you are done.



              You accidentally added the two middle terms instead of subtracting.






              share|cite|improve this answer









              $endgroup$

















                3












                $begingroup$

                Your error is just after the sixth step from the bottom:



                $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                Then you are done.



                You accidentally added the two middle terms instead of subtracting.






                share|cite|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  Your error is just after the sixth step from the bottom:



                  $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.






                  share|cite|improve this answer









                  $endgroup$



                  Your error is just after the sixth step from the bottom:



                  $$frac12 -frac 1(n+1)2^n+1 +frac1(n+1)2^n+1 - frac1(n+2)2^n+2=frac12 -frac1(n+2)2^n+2$$



                  Then you are done.



                  You accidentally added the two middle terms instead of subtracting.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 4 hours ago









                  John Wayland BalesJohn Wayland Bales

                  15.1k21238




                  15.1k21238





















                      2












                      $begingroup$

                      Using a telescoping sum, we get
                      $$
                      beginalign
                      sum_k=1^nfrack+2k(k+1)2^k+1
                      &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                      &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                      &=frac12-frac1(n+1)2^n+1
                      endalign
                      $$






                      share|cite|improve this answer









                      $endgroup$

















                        2












                        $begingroup$

                        Using a telescoping sum, we get
                        $$
                        beginalign
                        sum_k=1^nfrack+2k(k+1)2^k+1
                        &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                        &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                        &=frac12-frac1(n+1)2^n+1
                        endalign
                        $$






                        share|cite|improve this answer









                        $endgroup$















                          2












                          2








                          2





                          $begingroup$

                          Using a telescoping sum, we get
                          $$
                          beginalign
                          sum_k=1^nfrack+2k(k+1)2^k+1
                          &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                          &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                          &=frac12-frac1(n+1)2^n+1
                          endalign
                          $$






                          share|cite|improve this answer









                          $endgroup$



                          Using a telescoping sum, we get
                          $$
                          beginalign
                          sum_k=1^nfrack+2k(k+1)2^k+1
                          &=sum_k=1^nleft(frac1k2^k-frac1(k+1)2^k+1right)\
                          &=sum_k=1^nfrac1k2^k-sum_k=2^n+1frac1k2^k\
                          &=frac12-frac1(n+1)2^n+1
                          endalign
                          $$







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 3 hours ago









                          robjohnrobjohn

                          270k27312639




                          270k27312639



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3162553%2fproving-by-induction-of-n-is-this-correct-until-this-point%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                              Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                              Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko