Why is there is so much iron?Origin of elements heavier than Iron (Fe)What happens to the neighboring star of a type Ia supernova?Pressures Necessary for Carbon DetonationHow much iron would I have to shoot into the Sun to blow it up?How did all of the heavy elements on earth get here?Type II supernovae explosionsWhat causes a supernova explosion?Why does a star with its core collapsing and about to undergo a supernova, explode, instead of rapidly collapsing all of its matter into a black hole?How is black hole formed after a supernova explosion?Could the singularity of a black hole just be an iron / dark matter sphere?
Print a physical multiplication table
What is the adequate fee for a reveal operation?
Employee lack of ownership
Does multi-classing into Fighter give you heavy armor proficiency?
A single argument pattern definition applies to multiple-argument patterns?
Is a party consisting of only a bard, a cleric, and a warlock functional long-term?
Professor being mistaken for a grad student
Why does overlay work only on the first tcolorbox?
Book: Young man exiled to a penal colony, helps to lead revolution
Relationship between sampajanna definitions in SN 47.2 and SN 47.35
What exactly is this small puffer fish doing and how did it manage to accomplish such a feat?
Most cost effective thermostat setting: consistent temperature vs. lowest temperature possible
Why is the President allowed to veto a cancellation of emergency powers?
Custom alignment for GeoMarkers
"of which" is correct here?
How difficult is it to simply disable/disengage the MCAS on Boeing 737 Max 8 & 9 Aircraft?
Why do passenger jet manufacturers design their planes with stall prevention systems?
Adventure Game (text based) in C++
How could a scammer know the apps on my phone / iTunes account?
Different outputs for `w`, `who`, `whoami` and `id`
How to explain that I do not want to visit a country due to personal safety concern?
What is a ^ b and (a & b) << 1?
Do the common programs (for example: "ls", "cat") in Linux and BSD come from the same source code?
Is it true that good novels will automatically sell themselves on Amazon (and so on) and there is no need for one to waste time promoting?
Why is there is so much iron?
Origin of elements heavier than Iron (Fe)What happens to the neighboring star of a type Ia supernova?Pressures Necessary for Carbon DetonationHow much iron would I have to shoot into the Sun to blow it up?How did all of the heavy elements on earth get here?Type II supernovae explosionsWhat causes a supernova explosion?Why does a star with its core collapsing and about to undergo a supernova, explode, instead of rapidly collapsing all of its matter into a black hole?How is black hole formed after a supernova explosion?Could the singularity of a black hole just be an iron / dark matter sphere?
$begingroup$
We all know where iron comes from.... but as I am reading up on supernova's it got me wondering why there is as much iron as there is in the universe?
Brown dwarf's do not deposit iron...
White dwarf's do not deposit iron...
Type I supernovas leave no remnant so I can see where there would be iron released.
Type II leave either a neutron star or black hole. As I understand it, the iron ash core collapses and the shock wave blows the rest of the star apart. Therefore no iron is released. (I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe?)
Hypernova's will deposit iron... (but they seem to be really rare)
Do Type I supernova happen so frequently that iron is this common? Or am I missing something???
astrophysics astronomy
$endgroup$
add a comment |
$begingroup$
We all know where iron comes from.... but as I am reading up on supernova's it got me wondering why there is as much iron as there is in the universe?
Brown dwarf's do not deposit iron...
White dwarf's do not deposit iron...
Type I supernovas leave no remnant so I can see where there would be iron released.
Type II leave either a neutron star or black hole. As I understand it, the iron ash core collapses and the shock wave blows the rest of the star apart. Therefore no iron is released. (I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe?)
Hypernova's will deposit iron... (but they seem to be really rare)
Do Type I supernova happen so frequently that iron is this common? Or am I missing something???
astrophysics astronomy
$endgroup$
4
$begingroup$
Therefore no iron is released. are you sure?
$endgroup$
– Kyle Kanos
4 hours ago
$begingroup$
I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe? (I was thinking that the amount of iron being made during the compression of the rest of the star could not account for all of the iron in the universe...) Type II's do not seem to happen that often....do they?
$endgroup$
– Rick
4 hours ago
1
$begingroup$
This table in Wikipedia's "Nucleosynthesis" article might help, detailed here.
$endgroup$
– Nat
4 hours ago
add a comment |
$begingroup$
We all know where iron comes from.... but as I am reading up on supernova's it got me wondering why there is as much iron as there is in the universe?
Brown dwarf's do not deposit iron...
White dwarf's do not deposit iron...
Type I supernovas leave no remnant so I can see where there would be iron released.
Type II leave either a neutron star or black hole. As I understand it, the iron ash core collapses and the shock wave blows the rest of the star apart. Therefore no iron is released. (I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe?)
Hypernova's will deposit iron... (but they seem to be really rare)
Do Type I supernova happen so frequently that iron is this common? Or am I missing something???
astrophysics astronomy
$endgroup$
We all know where iron comes from.... but as I am reading up on supernova's it got me wondering why there is as much iron as there is in the universe?
Brown dwarf's do not deposit iron...
White dwarf's do not deposit iron...
Type I supernovas leave no remnant so I can see where there would be iron released.
Type II leave either a neutron star or black hole. As I understand it, the iron ash core collapses and the shock wave blows the rest of the star apart. Therefore no iron is released. (I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe?)
Hypernova's will deposit iron... (but they seem to be really rare)
Do Type I supernova happen so frequently that iron is this common? Or am I missing something???
astrophysics astronomy
astrophysics astronomy
edited 4 hours ago
Rick
asked 4 hours ago
RickRick
47110
47110
4
$begingroup$
Therefore no iron is released. are you sure?
$endgroup$
– Kyle Kanos
4 hours ago
$begingroup$
I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe? (I was thinking that the amount of iron being made during the compression of the rest of the star could not account for all of the iron in the universe...) Type II's do not seem to happen that often....do they?
$endgroup$
– Rick
4 hours ago
1
$begingroup$
This table in Wikipedia's "Nucleosynthesis" article might help, detailed here.
$endgroup$
– Nat
4 hours ago
add a comment |
4
$begingroup$
Therefore no iron is released. are you sure?
$endgroup$
– Kyle Kanos
4 hours ago
$begingroup$
I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe? (I was thinking that the amount of iron being made during the compression of the rest of the star could not account for all of the iron in the universe...) Type II's do not seem to happen that often....do they?
$endgroup$
– Rick
4 hours ago
1
$begingroup$
This table in Wikipedia's "Nucleosynthesis" article might help, detailed here.
$endgroup$
– Nat
4 hours ago
4
4
$begingroup$
Therefore no iron is released. are you sure?
$endgroup$
– Kyle Kanos
4 hours ago
$begingroup$
Therefore no iron is released. are you sure?
$endgroup$
– Kyle Kanos
4 hours ago
$begingroup$
I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe? (I was thinking that the amount of iron being made during the compression of the rest of the star could not account for all of the iron in the universe...) Type II's do not seem to happen that often....do they?
$endgroup$
– Rick
4 hours ago
$begingroup$
I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe? (I was thinking that the amount of iron being made during the compression of the rest of the star could not account for all of the iron in the universe...) Type II's do not seem to happen that often....do they?
$endgroup$
– Rick
4 hours ago
1
1
$begingroup$
This table in Wikipedia's "Nucleosynthesis" article might help, detailed here.
$endgroup$
– Nat
4 hours ago
$begingroup$
This table in Wikipedia's "Nucleosynthesis" article might help, detailed here.
$endgroup$
– Nat
4 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
in absolute terms, there is not a lot of iron in the universe. because of the manner in which our solar system formed, there happens to be a lot of iron concentrated in the earth, but the percentage of iron in the earth is in no way representative of the percentage of iron in the universe.
$endgroup$
add a comment |
$begingroup$
The nucleosynthesis in the inner of the stars generates energy: The comes huge amounts of energy from generating Helium form hydrogen, the star gets a lot form generating carbon from helium and so an. This finishes with iron. To generate with larger atomic numbers the star needs energy. Most of them are generated in supernovae, where there is a giant excess of energy.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466889%2fwhy-is-there-is-so-much-iron%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
in absolute terms, there is not a lot of iron in the universe. because of the manner in which our solar system formed, there happens to be a lot of iron concentrated in the earth, but the percentage of iron in the earth is in no way representative of the percentage of iron in the universe.
$endgroup$
add a comment |
$begingroup$
in absolute terms, there is not a lot of iron in the universe. because of the manner in which our solar system formed, there happens to be a lot of iron concentrated in the earth, but the percentage of iron in the earth is in no way representative of the percentage of iron in the universe.
$endgroup$
add a comment |
$begingroup$
in absolute terms, there is not a lot of iron in the universe. because of the manner in which our solar system formed, there happens to be a lot of iron concentrated in the earth, but the percentage of iron in the earth is in no way representative of the percentage of iron in the universe.
$endgroup$
in absolute terms, there is not a lot of iron in the universe. because of the manner in which our solar system formed, there happens to be a lot of iron concentrated in the earth, but the percentage of iron in the earth is in no way representative of the percentage of iron in the universe.
answered 1 hour ago
niels nielsenniels nielsen
20.7k53061
20.7k53061
add a comment |
add a comment |
$begingroup$
The nucleosynthesis in the inner of the stars generates energy: The comes huge amounts of energy from generating Helium form hydrogen, the star gets a lot form generating carbon from helium and so an. This finishes with iron. To generate with larger atomic numbers the star needs energy. Most of them are generated in supernovae, where there is a giant excess of energy.
New contributor
$endgroup$
add a comment |
$begingroup$
The nucleosynthesis in the inner of the stars generates energy: The comes huge amounts of energy from generating Helium form hydrogen, the star gets a lot form generating carbon from helium and so an. This finishes with iron. To generate with larger atomic numbers the star needs energy. Most of them are generated in supernovae, where there is a giant excess of energy.
New contributor
$endgroup$
add a comment |
$begingroup$
The nucleosynthesis in the inner of the stars generates energy: The comes huge amounts of energy from generating Helium form hydrogen, the star gets a lot form generating carbon from helium and so an. This finishes with iron. To generate with larger atomic numbers the star needs energy. Most of them are generated in supernovae, where there is a giant excess of energy.
New contributor
$endgroup$
The nucleosynthesis in the inner of the stars generates energy: The comes huge amounts of energy from generating Helium form hydrogen, the star gets a lot form generating carbon from helium and so an. This finishes with iron. To generate with larger atomic numbers the star needs energy. Most of them are generated in supernovae, where there is a giant excess of energy.
New contributor
New contributor
answered 52 mins ago
Uwe PilzUwe Pilz
714
714
New contributor
New contributor
add a comment |
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f466889%2fwhy-is-there-is-so-much-iron%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
4
$begingroup$
Therefore no iron is released. are you sure?
$endgroup$
– Kyle Kanos
4 hours ago
$begingroup$
I know some would be made in the explosion along with all of the elements up to uranium. But would that account for all of the iron in the universe? (I was thinking that the amount of iron being made during the compression of the rest of the star could not account for all of the iron in the universe...) Type II's do not seem to happen that often....do they?
$endgroup$
– Rick
4 hours ago
1
$begingroup$
This table in Wikipedia's "Nucleosynthesis" article might help, detailed here.
$endgroup$
– Nat
4 hours ago