Can a(n) = n/n+1 be written recursively?Formula for a sequenceUse of Recursively Defined FunctionsRecursive Sequence from Finite SequencesFinding the lowest common value in repeating sequencesUnexplanied pattern from increasing rational sequencesWhat would describe the following basic sequence?Understanding sub-sequencesCan the Fibonacci sequence be written as an explicit rule?Turning a recursively defined sequence into an explicit formulaWhat's the formula for producing these series?

Fully-Firstable Anagram Sets

Character reincarnated...as a snail

Can I ask the recruiters in my resume to put the reason why I am rejected?

LaTeX: Why are digits allowed in environments, but forbidden in commands?

Codimension of non-flat locus

RSA: Danger of using p to create q

Important Resources for Dark Age Civilizations?

Intersection point of 2 lines defined by 2 points each

Is it legal for company to use my work email to pretend I still work there?

Malcev's paper "On a class of homogeneous spaces" in English

Alternative to sending password over mail?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?

How is it possible to have an ability score that is less than 3?

strTok function (thread safe, supports empty tokens, doesn't change string)

I'm flying to France today and my passport expires in less than 2 months

Paid for article while in US on F-1 visa?

Why do I get two different answers for this counting problem?

What is the word for reserving something for yourself before others do?

When a company launches a new product do they "come out" with a new product or do they "come up" with a new product?

dbcc cleantable batch size explanation

Could an aircraft fly or hover using only jets of compressed air?

Cross compiling for RPi - error while loading shared libraries

What is a clear way to write a bar that has an extra beat?

Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?



Can a(n) = n/n+1 be written recursively?


Formula for a sequenceUse of Recursively Defined FunctionsRecursive Sequence from Finite SequencesFinding the lowest common value in repeating sequencesUnexplanied pattern from increasing rational sequencesWhat would describe the following basic sequence?Understanding sub-sequencesCan the Fibonacci sequence be written as an explicit rule?Turning a recursively defined sequence into an explicit formulaWhat's the formula for producing these series?













1












$begingroup$


Take the sequence 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, ...



Algebraically it can be written as a(n) = n / (n + 1)



Can you write this as a recursive function as well?



A pattern I have noticed:



  • Take A$_n-1$ and then inverse it. All you have to do is add two to the denominator. However, it is the denominator increase that causes a problem here.

I am currently in Algebra II Honors and learning sequences










share|cite







New contributor




Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    1












    $begingroup$


    Take the sequence 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, ...



    Algebraically it can be written as a(n) = n / (n + 1)



    Can you write this as a recursive function as well?



    A pattern I have noticed:



    • Take A$_n-1$ and then inverse it. All you have to do is add two to the denominator. However, it is the denominator increase that causes a problem here.

    I am currently in Algebra II Honors and learning sequences










    share|cite







    New contributor




    Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      1












      1








      1





      $begingroup$


      Take the sequence 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, ...



      Algebraically it can be written as a(n) = n / (n + 1)



      Can you write this as a recursive function as well?



      A pattern I have noticed:



      • Take A$_n-1$ and then inverse it. All you have to do is add two to the denominator. However, it is the denominator increase that causes a problem here.

      I am currently in Algebra II Honors and learning sequences










      share|cite







      New contributor




      Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Take the sequence 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, ...



      Algebraically it can be written as a(n) = n / (n + 1)



      Can you write this as a recursive function as well?



      A pattern I have noticed:



      • Take A$_n-1$ and then inverse it. All you have to do is add two to the denominator. However, it is the denominator increase that causes a problem here.

      I am currently in Algebra II Honors and learning sequences







      sequences-and-series number-theory recursion






      share|cite







      New contributor




      Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite







      New contributor




      Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite




      share|cite






      New contributor




      Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 1 hour ago









      Levi KLevi K

      262




      262




      New contributor




      Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          After some further solving, I was able to come up with an answer



          It can be written $$A_n + 1 = (2 - A_n)^-1$$ where $$A_1 = 1/2$$






          share|cite








          New contributor




          Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
          Check out our Code of Conduct.






          $endgroup$




















            2












            $begingroup$

            beginalign*
            a_n+1 &= fracn+1n+2 \
            &= fracn+2-1n+2 \
            &= 1 - frac1n+2 text, so \
            1 - a_n+1 &= frac1n+2 text, \
            frac11 - a_n+1 &= n+2 &[textand so frac11 - a_n = n+1]\
            &= n+1+1 \
            &= frac11- a_n +1 \
            &= frac11- a_n + frac1-a_n1-a_n \
            &= frac2-a_n1- a_n text, then \
            1 - a_n+1 &= frac1-a_n2- a_n text, and finally \
            a_n+1 &= 1 - frac1-a_n2- a_n \
            &= frac2-a_n2- a_n - frac1-a_n2- a_n \
            &= frac12- a_n text.
            endalign*






            share|cite|improve this answer









            $endgroup$




















              0












              $begingroup$

              Just by playing around with some numbers, I determined a recursive relation to be



              $$a_n = fracna_n-1 + 1n+1$$



              with $a_1 = 1/2$. I mostly derived this by noticing developing this would be easier if I negated the denominator of the previous term (thus multiplying by $n$), adding $1$ to the result (giving the increase in $1$ in the denominator), and then dividing again by the desired denominator ($n+1$).






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function ()
                return StackExchange.using("mathjaxEditing", function ()
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                );
                );
                , "mathjax-editing");

                StackExchange.ready(function()
                var channelOptions =
                tags: "".split(" "),
                id: "69"
                ;
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function()
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled)
                StackExchange.using("snippets", function()
                createEditor();
                );

                else
                createEditor();

                );

                function createEditor()
                StackExchange.prepareEditor(
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader:
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                ,
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                );



                );






                Levi K is a new contributor. Be nice, and check out our Code of Conduct.









                draft saved

                draft discarded


















                StackExchange.ready(
                function ()
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176633%2fcan-an-n-n1-be-written-recursively%23new-answer', 'question_page');

                );

                Post as a guest















                Required, but never shown

























                3 Answers
                3






                active

                oldest

                votes








                3 Answers
                3






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                2












                $begingroup$

                After some further solving, I was able to come up with an answer



                It can be written $$A_n + 1 = (2 - A_n)^-1$$ where $$A_1 = 1/2$$






                share|cite








                New contributor




                Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                Check out our Code of Conduct.






                $endgroup$

















                  2












                  $begingroup$

                  After some further solving, I was able to come up with an answer



                  It can be written $$A_n + 1 = (2 - A_n)^-1$$ where $$A_1 = 1/2$$






                  share|cite








                  New contributor




                  Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                  Check out our Code of Conduct.






                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    After some further solving, I was able to come up with an answer



                    It can be written $$A_n + 1 = (2 - A_n)^-1$$ where $$A_1 = 1/2$$






                    share|cite








                    New contributor




                    Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    $endgroup$



                    After some further solving, I was able to come up with an answer



                    It can be written $$A_n + 1 = (2 - A_n)^-1$$ where $$A_1 = 1/2$$







                    share|cite








                    New contributor




                    Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    share|cite



                    share|cite






                    New contributor




                    Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.









                    answered 52 mins ago









                    Levi KLevi K

                    262




                    262




                    New contributor




                    Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





                    New contributor





                    Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.






                    Levi K is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                    Check out our Code of Conduct.





















                        2












                        $begingroup$

                        beginalign*
                        a_n+1 &= fracn+1n+2 \
                        &= fracn+2-1n+2 \
                        &= 1 - frac1n+2 text, so \
                        1 - a_n+1 &= frac1n+2 text, \
                        frac11 - a_n+1 &= n+2 &[textand so frac11 - a_n = n+1]\
                        &= n+1+1 \
                        &= frac11- a_n +1 \
                        &= frac11- a_n + frac1-a_n1-a_n \
                        &= frac2-a_n1- a_n text, then \
                        1 - a_n+1 &= frac1-a_n2- a_n text, and finally \
                        a_n+1 &= 1 - frac1-a_n2- a_n \
                        &= frac2-a_n2- a_n - frac1-a_n2- a_n \
                        &= frac12- a_n text.
                        endalign*






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          beginalign*
                          a_n+1 &= fracn+1n+2 \
                          &= fracn+2-1n+2 \
                          &= 1 - frac1n+2 text, so \
                          1 - a_n+1 &= frac1n+2 text, \
                          frac11 - a_n+1 &= n+2 &[textand so frac11 - a_n = n+1]\
                          &= n+1+1 \
                          &= frac11- a_n +1 \
                          &= frac11- a_n + frac1-a_n1-a_n \
                          &= frac2-a_n1- a_n text, then \
                          1 - a_n+1 &= frac1-a_n2- a_n text, and finally \
                          a_n+1 &= 1 - frac1-a_n2- a_n \
                          &= frac2-a_n2- a_n - frac1-a_n2- a_n \
                          &= frac12- a_n text.
                          endalign*






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            beginalign*
                            a_n+1 &= fracn+1n+2 \
                            &= fracn+2-1n+2 \
                            &= 1 - frac1n+2 text, so \
                            1 - a_n+1 &= frac1n+2 text, \
                            frac11 - a_n+1 &= n+2 &[textand so frac11 - a_n = n+1]\
                            &= n+1+1 \
                            &= frac11- a_n +1 \
                            &= frac11- a_n + frac1-a_n1-a_n \
                            &= frac2-a_n1- a_n text, then \
                            1 - a_n+1 &= frac1-a_n2- a_n text, and finally \
                            a_n+1 &= 1 - frac1-a_n2- a_n \
                            &= frac2-a_n2- a_n - frac1-a_n2- a_n \
                            &= frac12- a_n text.
                            endalign*






                            share|cite|improve this answer









                            $endgroup$



                            beginalign*
                            a_n+1 &= fracn+1n+2 \
                            &= fracn+2-1n+2 \
                            &= 1 - frac1n+2 text, so \
                            1 - a_n+1 &= frac1n+2 text, \
                            frac11 - a_n+1 &= n+2 &[textand so frac11 - a_n = n+1]\
                            &= n+1+1 \
                            &= frac11- a_n +1 \
                            &= frac11- a_n + frac1-a_n1-a_n \
                            &= frac2-a_n1- a_n text, then \
                            1 - a_n+1 &= frac1-a_n2- a_n text, and finally \
                            a_n+1 &= 1 - frac1-a_n2- a_n \
                            &= frac2-a_n2- a_n - frac1-a_n2- a_n \
                            &= frac12- a_n text.
                            endalign*







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 34 mins ago









                            Eric TowersEric Towers

                            33.5k22370




                            33.5k22370





















                                0












                                $begingroup$

                                Just by playing around with some numbers, I determined a recursive relation to be



                                $$a_n = fracna_n-1 + 1n+1$$



                                with $a_1 = 1/2$. I mostly derived this by noticing developing this would be easier if I negated the denominator of the previous term (thus multiplying by $n$), adding $1$ to the result (giving the increase in $1$ in the denominator), and then dividing again by the desired denominator ($n+1$).






                                share|cite|improve this answer









                                $endgroup$

















                                  0












                                  $begingroup$

                                  Just by playing around with some numbers, I determined a recursive relation to be



                                  $$a_n = fracna_n-1 + 1n+1$$



                                  with $a_1 = 1/2$. I mostly derived this by noticing developing this would be easier if I negated the denominator of the previous term (thus multiplying by $n$), adding $1$ to the result (giving the increase in $1$ in the denominator), and then dividing again by the desired denominator ($n+1$).






                                  share|cite|improve this answer









                                  $endgroup$















                                    0












                                    0








                                    0





                                    $begingroup$

                                    Just by playing around with some numbers, I determined a recursive relation to be



                                    $$a_n = fracna_n-1 + 1n+1$$



                                    with $a_1 = 1/2$. I mostly derived this by noticing developing this would be easier if I negated the denominator of the previous term (thus multiplying by $n$), adding $1$ to the result (giving the increase in $1$ in the denominator), and then dividing again by the desired denominator ($n+1$).






                                    share|cite|improve this answer









                                    $endgroup$



                                    Just by playing around with some numbers, I determined a recursive relation to be



                                    $$a_n = fracna_n-1 + 1n+1$$



                                    with $a_1 = 1/2$. I mostly derived this by noticing developing this would be easier if I negated the denominator of the previous term (thus multiplying by $n$), adding $1$ to the result (giving the increase in $1$ in the denominator), and then dividing again by the desired denominator ($n+1$).







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered 54 mins ago









                                    Eevee TrainerEevee Trainer

                                    9,91631740




                                    9,91631740




















                                        Levi K is a new contributor. Be nice, and check out our Code of Conduct.









                                        draft saved

                                        draft discarded


















                                        Levi K is a new contributor. Be nice, and check out our Code of Conduct.












                                        Levi K is a new contributor. Be nice, and check out our Code of Conduct.











                                        Levi K is a new contributor. Be nice, and check out our Code of Conduct.














                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid


                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.

                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function ()
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176633%2fcan-an-n-n1-be-written-recursively%23new-answer', 'question_page');

                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                                        Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                                        Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko