Is it possible for a square root function,f(x), to map to a finite number of integers for all x in domain of f?For integers $a$ and $b gt 0$, and $n^2$ a sum of two square integers, does this strategy find the largest integer $x | x^2 lt n^2(a^2 + b^2)$?Do roots of a polynomial with coefficients from a Collatz sequence all fall in a disk of radius 1.5?A fun little problemWhat is the smallest integer $n$ greater than $1$ such that the root mean square of the first $n$ integers is an integer?on roots of an equationAn integer sequence with integer $k$ normsProof Verification: If $x$ is a nonnegative real number, then $big[sqrt[x]big] = big[sqrtxbig]$Digit after decimal point of radicalsProving that there does not exist an infinite descending sequence of naturals using minimal counterexamplenumber of different ways to represent a positive integer as a binomial coefficient

Why can't we play rap on piano?

What does it mean to describe someone as a butt steak?

Why are electrically insulating heatsinks so rare? Is it just cost?

How does one intimidate enemies without having the capacity for violence?

Replacing matching entries in one column of a file by another column from a different file

What's the point of deactivating Num Lock on login screens?

Why is Minecraft giving an OpenGL error?

Maximum likelihood parameters deviate from posterior distributions

Why doesn't H₄O²⁺ exist?

Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?

Modeling an IP Address

Intersection point of 2 lines defined by 2 points each

Does an object always see its latest internal state irrespective of thread?

What would happen to a modern skyscraper if it rains micro blackholes?

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

What is a clear way to write a bar that has an extra beat?

Theorems that impeded progress

How old can references or sources in a thesis be?

A case of the sniffles

Do infinite dimensional systems make sense?

Can I make popcorn with any corn?

RSA: Danger of using p to create q

Client team has low performances and low technical skills: we always fix their work and now they stop collaborate with us. How to solve?

Why does Kotter return in Welcome Back Kotter?



Is it possible for a square root function,f(x), to map to a finite number of integers for all x in domain of f?


For integers $a$ and $b gt 0$, and $n^2$ a sum of two square integers, does this strategy find the largest integer $x | x^2 lt n^2(a^2 + b^2)$?Do roots of a polynomial with coefficients from a Collatz sequence all fall in a disk of radius 1.5?A fun little problemWhat is the smallest integer $n$ greater than $1$ such that the root mean square of the first $n$ integers is an integer?on roots of an equationAn integer sequence with integer $k$ normsProof Verification: If $x$ is a nonnegative real number, then $big[sqrt[x]big] = big[sqrtxbig]$Digit after decimal point of radicalsProving that there does not exist an infinite descending sequence of naturals using minimal counterexamplenumber of different ways to represent a positive integer as a binomial coefficient













1












$begingroup$


Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$










share|cite|improve this question











$endgroup$







  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    6 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    6 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    5 hours ago















1












$begingroup$


Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$










share|cite|improve this question











$endgroup$







  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    6 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    6 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    5 hours ago













1












1








1


1



$begingroup$


Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$










share|cite|improve this question











$endgroup$




Consider the equation $$f(x) =sqrtx^2 - x + 1$$



Using python I checked x for $$ -100000000 leq x leq 100000000$$



and have only found two values of x, x = 0 and x = 1 that map to integers. While this range is quite large I am skeptical there is no other x that will map to an integer. How would one go about proving the choices for x that map to an integer given some square root function is finite or infinite?



Edit: $$x in mathbbZ$$







elementary-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago







Diehardwalnut

















asked 6 hours ago









DiehardwalnutDiehardwalnut

257110




257110







  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    6 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    6 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    5 hours ago












  • 4




    $begingroup$
    To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
    $endgroup$
    – Théophile
    6 hours ago










  • $begingroup$
    Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
    $endgroup$
    – Arturo Magidin
    6 hours ago










  • $begingroup$
    Justed edited, yes I meant to say $$x in mathbbZ$$
    $endgroup$
    – Diehardwalnut
    5 hours ago







4




4




$begingroup$
To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
$endgroup$
– Théophile
6 hours ago




$begingroup$
To be clear, $x$ is an integer here? By convention, if not otherwise specified, $x,y$, are typically used for real numbers; $m,n$ are often used for integers.
$endgroup$
– Théophile
6 hours ago












$begingroup$
Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
$endgroup$
– Arturo Magidin
6 hours ago




$begingroup$
Well, if $x^2-x-3=0$ (that is, if $x=(1+sqrt13)/2$, then $x^2-x+1= 4$, hence $f(x) = 2$. So presumably, you want $x$ to be an integer? If so, you are trying to solve the quadratic diophantine equation $x^2-x+1=y^2$.
$endgroup$
– Arturo Magidin
6 hours ago












$begingroup$
Justed edited, yes I meant to say $$x in mathbbZ$$
$endgroup$
– Diehardwalnut
5 hours ago




$begingroup$
Justed edited, yes I meant to say $$x in mathbbZ$$
$endgroup$
– Diehardwalnut
5 hours ago










3 Answers
3






active

oldest

votes


















3












$begingroup$

First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



Furthermore
beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
x^2-(x-1)^2&=colorblue2x-1tag2
endalign*



Can you end it now?




Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text unless xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
    $$y^2 = x^2-x+1,$$
    so $y^2-1=x^2-x$. That is,
    $$(y+1)(y-1) = x(x-1).$$



    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      Hint:



      For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



      for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176345%2fis-it-possible-for-a-square-root-function-fx-to-map-to-a-finite-number-of-int%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        3












        $begingroup$

        First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



        Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



        It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



        Furthermore
        beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
        x^2-(x-1)^2&=colorblue2x-1tag2
        endalign*



        Can you end it now?




        Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text unless xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







        share|cite|improve this answer











        $endgroup$

















          3












          $begingroup$

          First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



          Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



          It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



          Furthermore
          beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
          x^2-(x-1)^2&=colorblue2x-1tag2
          endalign*



          Can you end it now?




          Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text unless xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







          share|cite|improve this answer











          $endgroup$















            3












            3








            3





            $begingroup$

            First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



            Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



            It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



            Furthermore
            beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
            x^2-(x-1)^2&=colorblue2x-1tag2
            endalign*



            Can you end it now?




            Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text unless xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.







            share|cite|improve this answer











            $endgroup$



            First of all, observe that the function is defined $forall xin mathbb Z$ since $x^2+1geq2xgeq xiff x^2-x+1geq 0$.



            Completing the square, we get $$x^2-x+1=(x-1)^2+colorbluex$$



            It obviously works for $x=0$. Observe now, that the nearest squares are $(x-2)^2$ and $x^2$.



            Furthermore
            beginalign*(x-1)^2-(x-2)^2&=colorblue2x-3tag1\
            x^2-(x-1)^2&=colorblue2x-1tag2
            endalign*



            Can you end it now?




            Hint: Observe, for instance, that $$lvert 2x-3rvert>lvert xrvert text unless xin[1, 3]$$ $$lvert 2x-1rvert>lvert xrvert text unless xin[frac13, 1]$$The difference becomes then too big otherwise... Thus - and since $x$ is an integer - you just have to check the cases $xin1, 2, 3$.








            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 58 mins ago









            Carmeister

            2,8592924




            2,8592924










            answered 6 hours ago









            Dr. MathvaDr. Mathva

            3,215630




            3,215630





















                2












                $begingroup$

                Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                $$y^2 = x^2-x+1,$$
                so $y^2-1=x^2-x$. That is,
                $$(y+1)(y-1) = x(x-1).$$



                So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                  $$y^2 = x^2-x+1,$$
                  so $y^2-1=x^2-x$. That is,
                  $$(y+1)(y-1) = x(x-1).$$



                  So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                    $$y^2 = x^2-x+1,$$
                    so $y^2-1=x^2-x$. That is,
                    $$(y+1)(y-1) = x(x-1).$$



                    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?






                    share|cite|improve this answer









                    $endgroup$



                    Hint: let $y = sqrtx^2-x+1$. Squaring both sides,
                    $$y^2 = x^2-x+1,$$
                    so $y^2-1=x^2-x$. That is,
                    $$(y+1)(y-1) = x(x-1).$$



                    So your question becomes: when can the product of two numbers with difference two (i.e., the LHS) equal the product of two numbers with difference one (i.e., the RHS)?







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 6 hours ago









                    ThéophileThéophile

                    20.4k13047




                    20.4k13047





















                        0












                        $begingroup$

                        Hint:



                        For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                        for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          Hint:



                          For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                          for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            Hint:



                            For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                            for $x<0$, $x^2<x^2-x+1<(x-1)^2$.






                            share|cite|improve this answer









                            $endgroup$



                            Hint:



                            For $x>1$, $(x-1)^2 lt x^2-x+1 lt x^2$;



                            for $x<0$, $x^2<x^2-x+1<(x-1)^2$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 4 hours ago









                            J. W. TannerJ. W. Tanner

                            4,4691320




                            4,4691320



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3176345%2fis-it-possible-for-a-square-root-function-fx-to-map-to-a-finite-number-of-int%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                                Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                                Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko