Holes in ElementMesh with ToElementMesh of ImplicitRegion Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?ElementMesh from ImplicitRegion cuts corners of regionLong running ToElementMesh with very “large” domainsToElementMesh[]BoundaryDiscretizeRegion given an ImplicitRegion never returnsIntegral over an ImplicitRegionMaking good meshesElementMesh from Tetrahedron subdivisionHow to compare ImplicitRegion with empty region?ElementMesh from ImplicitRegion cuts corners of regionUsing a mixture of QuadElement and TriangleElement in ElementMeshToElementMesh of Region with Hole

Did the Roman Empire have penal colonies?

Multiple options vs single option UI

What do you call the part of a novel that is not dialog?

What is the ongoing value of the Kanban board to the developers as opposed to management

What ability score does a Hexblade's Pact Weapon use for attack and damage when wielded by another character?

What *exactly* is electrical current, voltage, and resistance?

Why did C use the -> operator instead of reusing the . operator?

Is accepting an invalid credit card number a security issue?

Is Bran literally the world's memory?

Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.

What’s with the clanks in Endgame?

A Dictionary or Encyclopedia of Fantasy or Fairy Tales from the 1960s

What is it called when you ride around on your front wheel?

Trumpet valves, lengths, and pitch

Raising a bilingual kid. When should we introduce the majority language?

A strange hotel

std::is_constructible on incomplete types

How to open locks without disable device?

How to get even lighting when using flash for group photos near wall?

How to avoid introduction cliches

Does Feeblemind produce an ongoing magical effect that can be dispelled?

Arriving in Atlanta after US Preclearance in Dublin. Will I go through TSA security in Atlanta to transfer to a connecting flight?

Is a 5 watt UHF/VHF handheld considered QRP?

Is it acceptable to use working hours to read general interest books?



Holes in ElementMesh with ToElementMesh of ImplicitRegion



Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?ElementMesh from ImplicitRegion cuts corners of regionLong running ToElementMesh with very “large” domainsToElementMesh[]BoundaryDiscretizeRegion given an ImplicitRegion never returnsIntegral over an ImplicitRegionMaking good meshesElementMesh from Tetrahedron subdivisionHow to compare ImplicitRegion with empty region?ElementMesh from ImplicitRegion cuts corners of regionUsing a mixture of QuadElement and TriangleElement in ElementMeshToElementMesh of Region with Hole










3












$begingroup$


I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



Here is the cell (it's just a square),



cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
Graphics[Transparent, EdgeForm[Thick], cell]


and the function,



f[kx_, ky_, n_] := 
Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
0.12, 0., 0., 0.,
0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
0., 0.12, -0.23,
0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
0.12, -0.23,
0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
n]];
Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


enter image description here



and what the region should look like,



isovalue = 1.29897233417072;
ContourPlot[f[x, y, 4], x, y [Element] cell,
Contours -> isovalue, ColorFunction -> GrayLevel,
PlotPoints -> 100]


enter image description here



This is what I have tried



reg = ToElementMesh[
ImplicitRegion[
f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
"MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
"BoundaryMeshGenerator" -> "Continuation"];
RegionPlot[reg]


enter image description here
The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










share|improve this question











$endgroup$
















    3












    $begingroup$


    I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



    Here is the cell (it's just a square),



    cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
    Graphics[Transparent, EdgeForm[Thick], cell]


    and the function,



    f[kx_, ky_, n_] := 
    Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
    0.12, 0., 0., 0.,
    0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
    0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
    0.12, -0.23, 0., 0., 0., -0.23, 0.12,
    0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
    0., 0.12, -0.23,
    0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
    0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
    0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
    0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
    0.12, -0.23,
    0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
    0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
    n]];
    Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


    enter image description here



    and what the region should look like,



    isovalue = 1.29897233417072;
    ContourPlot[f[x, y, 4], x, y [Element] cell,
    Contours -> isovalue, ColorFunction -> GrayLevel,
    PlotPoints -> 100]


    enter image description here



    This is what I have tried



    reg = ToElementMesh[
    ImplicitRegion[
    f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
    "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
    PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
    "BoundaryMeshGenerator" -> "Continuation"];
    RegionPlot[reg]


    enter image description here
    The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










    share|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



      Here is the cell (it's just a square),



      cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
      Graphics[Transparent, EdgeForm[Thick], cell]


      and the function,



      f[kx_, ky_, n_] := 
      Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
      0.12, 0., 0., 0.,
      0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
      0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
      0., 0.12, -0.23,
      0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
      0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
      0.12, -0.23,
      0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
      0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
      n]];
      Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


      enter image description here



      and what the region should look like,



      isovalue = 1.29897233417072;
      ContourPlot[f[x, y, 4], x, y [Element] cell,
      Contours -> isovalue, ColorFunction -> GrayLevel,
      PlotPoints -> 100]


      enter image description here



      This is what I have tried



      reg = ToElementMesh[
      ImplicitRegion[
      f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
      "BoundaryMeshGenerator" -> "Continuation"];
      RegionPlot[reg]


      enter image description here
      The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.










      share|improve this question











      $endgroup$




      I am trying to plot a function in a region below a level curve of the function and within a cell. I have been doing this by calculating an ElementMesh using ImplicitRegion and ToElementMesh, but the result has holes.



      Here is the cell (it's just a square),



      cell = Parallelogram[-0.5`, -0.5`, 1.`, 0.`, 0.`, 1.`];
      Graphics[Transparent, EdgeForm[Thick], cell]


      and the function,



      f[kx_, ky_, n_] := 
      Sort[Eigenvalues[(-1. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23,
      0.12, 0., 0., 0.,
      0., -0.23, (-1. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0., 0., 0., -0.23, (-1. + kx)^2 + (1. + ky)^2, 0.,
      0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (0. + kx)^2 + (-1. + ky)^2, -0.23, 0., -0.23, 0.12,
      0., 0.12, -0.23,
      0.12, -0.23, (0. + kx)^2 + (0. + ky)^2, -0.23, 0.12, -0.23,
      0.12, 0., 0.12, -0.23, 0., -0.23, (0. + kx)^2 + (1. + ky)^2,
      0., 0.12, -0.23, 0., 0., 0., -0.23, 0.12,
      0., (1. + kx)^2 + (-1. + ky)^2, -0.23, 0., 0., 0., 0.,
      0.12, -0.23,
      0.12, -0.23, (1. + kx)^2 + (0. + ky)^2, -0.23, 0., 0., 0.,
      0., 0.12, -0.23, 0., -0.23, (1. + kx)^2 + (1. + ky)^2]][[
      n]];
      Plot3D[f[x, y, 4], x, y [Element] cell, PlotPoints -> 50]


      enter image description here



      and what the region should look like,



      isovalue = 1.29897233417072;
      ContourPlot[f[x, y, 4], x, y [Element] cell,
      Contours -> isovalue, ColorFunction -> GrayLevel,
      PlotPoints -> 100]


      enter image description here



      This is what I have tried



      reg = ToElementMesh[
      ImplicitRegion[
      f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
      "BoundaryMeshGenerator" -> "Continuation"];
      RegionPlot[reg]


      enter image description here
      The region is no more accurate when I decrease MaxCellMeasure or MaxBoundaryCellMeasure. I also tried the solution suggested here.







      plotting finite-element-method mesh implicit






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 51 mins ago









      user21

      21.1k55999




      21.1k55999










      asked 8 hours ago









      jerjorgjerjorg

      874




      874




















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



          First we create a high quality Graphics of the region of interest.



          isovalue = 1.29897233417072;
          (* Add some margins to plot range to get connected region. *)
          tolerance = 0.05;
          plot = ContourPlot[
          f[x, y, 4],
          x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
          Contours -> isovalue,
          ColorFunction -> GrayLevel,
          (* We need high quality plot for ImageMesh later. *)
          PlotPoints -> 200,
          Frame -> None
          ]


          Create MeshRegion from Graphics object.



          mreg = ImageMesh[ColorNegate[plot]]


          And convert it to ElementMesh.



          Needs["NDSolve`FEM`"]
          mesh = ToElementMesh[mreg,"MeshOrder"->1]
          (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

          mesh["Wireframe"]


          mesh






          share|improve this answer









          $endgroup$




















            3












            $begingroup$

            Another approach is:



            reg = ToElementMesh[
            ImplicitRegion[
            f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
            "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
            PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
            "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

            reg["Wireframe"]


            enter image description here



            One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






            share|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



              First we create a high quality Graphics of the region of interest.



              isovalue = 1.29897233417072;
              (* Add some margins to plot range to get connected region. *)
              tolerance = 0.05;
              plot = ContourPlot[
              f[x, y, 4],
              x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
              Contours -> isovalue,
              ColorFunction -> GrayLevel,
              (* We need high quality plot for ImageMesh later. *)
              PlotPoints -> 200,
              Frame -> None
              ]


              Create MeshRegion from Graphics object.



              mreg = ImageMesh[ColorNegate[plot]]


              And convert it to ElementMesh.



              Needs["NDSolve`FEM`"]
              mesh = ToElementMesh[mreg,"MeshOrder"->1]
              (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

              mesh["Wireframe"]


              mesh






              share|improve this answer









              $endgroup$

















                3












                $begingroup$

                I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                First we create a high quality Graphics of the region of interest.



                isovalue = 1.29897233417072;
                (* Add some margins to plot range to get connected region. *)
                tolerance = 0.05;
                plot = ContourPlot[
                f[x, y, 4],
                x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
                Contours -> isovalue,
                ColorFunction -> GrayLevel,
                (* We need high quality plot for ImageMesh later. *)
                PlotPoints -> 200,
                Frame -> None
                ]


                Create MeshRegion from Graphics object.



                mreg = ImageMesh[ColorNegate[plot]]


                And convert it to ElementMesh.



                Needs["NDSolve`FEM`"]
                mesh = ToElementMesh[mreg,"MeshOrder"->1]
                (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

                mesh["Wireframe"]


                mesh






                share|improve this answer









                $endgroup$















                  3












                  3








                  3





                  $begingroup$

                  I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                  First we create a high quality Graphics of the region of interest.



                  isovalue = 1.29897233417072;
                  (* Add some margins to plot range to get connected region. *)
                  tolerance = 0.05;
                  plot = ContourPlot[
                  f[x, y, 4],
                  x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
                  Contours -> isovalue,
                  ColorFunction -> GrayLevel,
                  (* We need high quality plot for ImageMesh later. *)
                  PlotPoints -> 200,
                  Frame -> None
                  ]


                  Create MeshRegion from Graphics object.



                  mreg = ImageMesh[ColorNegate[plot]]


                  And convert it to ElementMesh.



                  Needs["NDSolve`FEM`"]
                  mesh = ToElementMesh[mreg,"MeshOrder"->1]
                  (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

                  mesh["Wireframe"]


                  mesh






                  share|improve this answer









                  $endgroup$



                  I hope I interpreted your question correctly that you want a more accurate ElementMesh representation of the region.



                  First we create a high quality Graphics of the region of interest.



                  isovalue = 1.29897233417072;
                  (* Add some margins to plot range to get connected region. *)
                  tolerance = 0.05;
                  plot = ContourPlot[
                  f[x, y, 4],
                  x, y ∈ Cuboid[-0.5, -0.5 - tolerance, 0.5, 0.5 + tolerance],
                  Contours -> isovalue,
                  ColorFunction -> GrayLevel,
                  (* We need high quality plot for ImageMesh later. *)
                  PlotPoints -> 200,
                  Frame -> None
                  ]


                  Create MeshRegion from Graphics object.



                  mreg = ImageMesh[ColorNegate[plot]]


                  And convert it to ElementMesh.



                  Needs["NDSolve`FEM`"]
                  mesh = ToElementMesh[mreg,"MeshOrder"->1]
                  (* ElementMesh[7., 353., 7., 353., TriangleElement["<" 1057 ">"]] *)

                  mesh["Wireframe"]


                  mesh







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 1 hour ago









                  PintiPinti

                  3,95211037




                  3,95211037





















                      3












                      $begingroup$

                      Another approach is:



                      reg = ToElementMesh[
                      ImplicitRegion[
                      f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                      "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                      PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                      "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                      reg["Wireframe"]


                      enter image description here



                      One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                      share|improve this answer









                      $endgroup$

















                        3












                        $begingroup$

                        Another approach is:



                        reg = ToElementMesh[
                        ImplicitRegion[
                        f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                        "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                        PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                        "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                        reg["Wireframe"]


                        enter image description here



                        One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                        share|improve this answer









                        $endgroup$















                          3












                          3








                          3





                          $begingroup$

                          Another approach is:



                          reg = ToElementMesh[
                          ImplicitRegion[
                          f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                          "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                          PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                          "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                          reg["Wireframe"]


                          enter image description here



                          One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.






                          share|improve this answer









                          $endgroup$



                          Another approach is:



                          reg = ToElementMesh[
                          ImplicitRegion[
                          f[x, y, 4] < isovalue && x, y [Element] cell, x, y],
                          "MaxBoundaryCellMeasure" -> 0.01, MeshQualityGoal -> 1,
                          PerformanceGoal -> "Quality", MaxCellMeasure -> 0.01,
                          "BoundaryMeshGenerator" -> "RegionPlot", "SamplePoints" -> 41];

                          reg["Wireframe"]


                          enter image description here



                          One thing to be a bit careful about is the question if the holes intersect the boundary. From the mesh it does not look like it but the math might say it.







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 37 mins ago









                          user21user21

                          21.1k55999




                          21.1k55999



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f196970%2fholes-in-elementmesh-with-toelementmesh-of-implicitregion%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                              Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                              Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko