Approximating irrational number to rational number$lim_ntoinfty f(2^n)$ for some very slowly increasing function $f(n)$Hermite Interpolation of $e^x$. Strange behaviour when increasing the number of derivatives at interpolating points.Newton's Method, and approximating parameters for Bézier curves.Approximating Logs and Antilogs by handApproximating fractionsExistence of Irrational Number that has same $n$ digits of a given Rational Number.Finding Irrational Approximation for a given Rational Number.Atomic weights: rational or irrational?Does there exist infinitely many $mu$ which satisfy this:Approximating functions with rational functions
Are the IPv6 address space and IPv4 address space completely disjoint?
Is there a working SACD iso player for Ubuntu?
Energy measurement from position eigenstate
Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?
How could a planet have erratic days?
How should I respond when I lied about my education and the company finds out through background check?
WiFi Thermostat, No C Terminal on Furnace
Is it possible to put a rectangle as background in the author section?
250 Floor Tower
How can Trident be so inexpensive? Will it orbit Triton or just do a (slow) flyby?
How do you respond to a colleague from another team when they're wrongly expecting that you'll help them?
What is this called? Old film camera viewer?
Approximating irrational number to rational number
What was the exact wording from Ivanhoe of this advice on how to free yourself from slavery?
How do I find all files that end with a dot
Offered money to buy a house, seller is asking for more to cover gap between their listing and mortgage owed
Is it better practice to read straight from sheet music rather than memorize it?
Does a 'pending' US visa application constitute a denial?
What does routing an IP address mean?
What was this official D&D 3.5e Lovecraft-flavored rulebook?
What is this cable/device?
Loading commands from file
It grows, but water kills it
Lowest total scrabble score
Approximating irrational number to rational number
$lim_ntoinfty f(2^n)$ for some very slowly increasing function $f(n)$Hermite Interpolation of $e^x$. Strange behaviour when increasing the number of derivatives at interpolating points.Newton's Method, and approximating parameters for Bézier curves.Approximating Logs and Antilogs by handApproximating fractionsExistence of Irrational Number that has same $n$ digits of a given Rational Number.Finding Irrational Approximation for a given Rational Number.Atomic weights: rational or irrational?Does there exist infinitely many $mu$ which satisfy this:Approximating functions with rational functions
$begingroup$
I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
$endgroup$
add a comment |
$begingroup$
I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
$endgroup$
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
52 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
50 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
50 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
48 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
39 mins ago
add a comment |
$begingroup$
I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
$endgroup$
I'm making a phone game, and I need to approximate $frac log(5/4)log(3/2)$ to a rational number $p/q$.
I wish $p$ and $q$ small enough. For example, I don't want $p$, $qapprox 10^7$; it's way too much for my code.
In the game, there's two way to upgrade ability. Type A gives additional $50%$ increase at once. and type B gives $25%$.
What I want to know is how many times of upgrade $(x,y)$ provides same additional increase. So what I've done is solve $(3/2)^x = (5/4)^y$ respect to $frac xy$.
Can you provide me way to construct sequence $p_n$, $q_n$ which approximate the real number?
Thank you in advance.
approximation
approximation
edited 50 mins ago
Rócherz
2,9863821
2,9863821
asked 1 hour ago
MrTanorusMrTanorus
1928
1928
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
52 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
50 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
50 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
48 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
39 mins ago
add a comment |
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
52 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
50 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
50 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
48 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
39 mins ago
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
52 mins ago
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
52 mins ago
1
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
50 mins ago
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
50 mins ago
1
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
50 mins ago
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
50 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
48 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
48 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
39 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
39 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
$endgroup$
– robjohn♦
4 mins ago
add a comment |
$begingroup$
The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
$$
0;1,1,4,2,6,1,color#C0010,143,3,dots
$$
The convergents for this continued fraction are
$$
left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
17 mins ago
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$beginarrayccx&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
$endgroup$
– robjohn♦
4 mins ago
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
$endgroup$
– robjohn♦
4 mins ago
add a comment |
$begingroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
$endgroup$
The number you want to approximate is about $0.550339713213$. An excellent approximation is $frac 8911619approx 0.550339715873$. I got that by using the continued fraction. When you see a large value like $143$, truncating before it yields a very good approximation.
answered 44 mins ago
Ross MillikanRoss Millikan
300k24200374
300k24200374
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
$endgroup$
– robjohn♦
4 mins ago
add a comment |
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
$endgroup$
– robjohn♦
4 mins ago
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
$endgroup$
– robjohn♦
4 mins ago
$begingroup$
(+1) I wondered where you got $143$ until I actually computed the continued fraction. I'd hoped it was okay to expand upon your answer to show where that number came from. Also to mention that if $frac pq$ is a continued fraction and $c$ is the next term in the conitnued fraction (which I think is called a continuant), then $frac pq$ is closer than $frac1cq^2$ to the value approximated.
$endgroup$
– robjohn♦
4 mins ago
add a comment |
$begingroup$
The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
$$
0;1,1,4,2,6,1,color#C0010,143,3,dots
$$
The convergents for this continued fraction are
$$
left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
17 mins ago
add a comment |
$begingroup$
The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
$$
0;1,1,4,2,6,1,color#C0010,143,3,dots
$$
The convergents for this continued fraction are
$$
left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.
$endgroup$
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
17 mins ago
add a comment |
$begingroup$
The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
$$
0;1,1,4,2,6,1,color#C0010,143,3,dots
$$
The convergents for this continued fraction are
$$
left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.
$endgroup$
The continued fraction for $fraclogleft(frac54right)logleft(frac32right)$ is
$$
0;1,1,4,2,6,1,color#C0010,143,3,dots
$$
The convergents for this continued fraction are
$$
left0,1,frac12,frac59,frac1120,frac71129,frac82149,color#C00frac8911619,frac127495231666,frac383376696617,dotsright
$$
As Ross Millikan mentions, stopping just before a large continuant like $143$ gives a particularly good approximation for the size of the denominator; in this case, the approximation $frac8911619$ is closer than $frac1143cdot1619^2$ to $fraclogleft(frac54right)logleft(frac32right)$.
answered 29 mins ago
robjohn♦robjohn
269k27311638
269k27311638
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
17 mins ago
add a comment |
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
17 mins ago
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
17 mins ago
$begingroup$
Thank you. A good addition to my answer.
$endgroup$
– Ross Millikan
17 mins ago
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$beginarrayccx&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.
$endgroup$
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$beginarrayccx&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.
$endgroup$
add a comment |
$begingroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$beginarrayccx&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.
$endgroup$
Running the extended Euclidean algorithm to find the continued fraction:
$$beginarrayccx&q&a&b\
hline 0.55033971 & & 0 & 1\ 1 & 0 & 1 & 0\ 0.55033971 & 1 & 0 & 1\ 0.44966029 & 1 & 1 & -1 \ 0.10067943 & 4 & -1 & 2\ 0.04694258 & 2 & 5 & -9\ 0.00679426 & 6 & -11 & 20 \ 0.00617700 & 1 & 71 & -129 \ 0.00061727 & 10 & -82 & 149\ 4.31cdot 10^-6 & 143 & 891 & -1619 \
1.25cdot 10^-6 & 3 & -127495 & 231666endarray$$
The $q$ column are the quotients, that go into the continued fraction. The $a$ and $b$ columns track a linear combination of the original two that's equal to $x_n$; for example, $-11cdot 1 + 20cdot fraclog(5/4)log(3/2)approx 0.00679426$. The fraction $left|fraclog(5/4)log(3/2)right|$ is approximated by $frac$, with increasing accuracy.
The formulas for building this table: $q_n = leftlfloor frac x_n-1x_nrightrfloor$, $x_n+1=x_n-1-q_nx_n$, $a_n+1=a_n-1-q_na_n$, $b_n+1=b_n-1-q_nb_n$. Initialize with $x_0=1$, $x_-1$ the quantity we're trying to estimate, $a_-1=b_0=0$, $a_0=b_-1=1$.
If you run the table much large than this, watch for floating-point accuracy issues; once the $x_n$ get down close to the accuracy limit for floating point numbers near zero, you can't trust the quotients anymore.
Now, how that accuracy increases is irregular. Large quotients go with particularly good approximations - see how that quotient of $143$ means that we have to go to six-digit numerator and denominator to do better than that $frac8911619$ approximation.
It is of course a tradeoff between accuracy and how deep you go. For your purposes in costing the two upgrades, I'd probably go with that $frac1120$ approximation.
answered 18 mins ago
jmerryjmerry
15.8k1632
15.8k1632
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160023%2fapproximating-irrational-number-to-rational-number%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't understand your game, but your number approximately $0.55034$ and thus $tfrac55034100000$ or $tfrac550310000$. What's wrong with that?
$endgroup$
– amsmath
52 mins ago
1
$begingroup$
The continued fraction expansion of your irrational number will produce the best rational approximation subject to a limit on size of the denominator.
$endgroup$
– hardmath
50 mins ago
1
$begingroup$
You can take truncations of the continued fraction of that number. The first few of its values start like this.
$endgroup$
– user647486
50 mins ago
$begingroup$
try 82/149 ........
$endgroup$
– Will Jagy
48 mins ago
$begingroup$
Cool, a practical application of continued fractions. :)
$endgroup$
– Minus One-Twelfth
39 mins ago