Question about the proof of Second Isomorphism TheoremIsomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem
Is it possible to have a strip of cold climate in the middle of a planet?
Is a bound state a stationary state?
Is it improper etiquette to ask your opponent what his/her rating is before the game?
How do I color the graph in datavisualization?
Travelling outside the UK without a passport
Is it possible to put a rectangle as background in the author section?
Pre-mixing cryogenic fuels and using only one fuel tank
What should you do when eye contact makes your subordinate uncomfortable?
Can I sign legal documents with a smiley face?
Problem with TransformedDistribution
How should I respond when I lied about my education and the company finds out through background check?
Fear of getting stuck on one programming language / technology that is not used in my country
Freedom of speech and where it applies
Create all possible words using a set or letters
Should I outline or discovery write my stories?
How to explain what's wrong with this application of the chain rule?
Creepy dinosaur pc game identification
Request info on 12/48v PSU
What are the purposes of autoencoders?
How to implement a feedback to keep the DC gain at zero for this conceptual passive filter?
Why do compilers behave differently when static_cast(ing) a function to void*?
Question about the proof of Second Isomorphism Theorem
Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?
What prevents the use of a multi-segment ILS for non-straight approaches?
Question about the proof of Second Isomorphism Theorem
Isomorphism theorem and proving $f:Gto G'$ onto, $K'triangleleft G'Rightarrow G/f^-1(K')cong G'/K'$Interpretation of Second isomorphism theoremQuestion about second Isomorphism TheoremNeed isomorphism theorem intuitionWhy $phi(H) cong H/ kerphi$ in the Second Isomorphism Theorem?Intuition behind the first isomorphism theoremIntuition about the first isomorphism theoremIntuition about the second isomorphism theoremFundamental Isomorphism TheoremFinding the kernel of $phi$ of applying the First Isomorphism Theorem
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
add a comment |
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
add a comment |
$begingroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
$endgroup$
The Second Isomorphism Theorem:
Let $H$ be a subgroup of a group $G$ and $N$ a normal subgroup of $G$. Then
$$H/(Hcap N)cong(HN)/N$$
There is the proof of Abstract Algebra Thomas by W. Judson:
Define a map $phi$ from $H$ to $HN/N$ by $Hmapsto hN$. The map $phi$ is onto, since any coset $hnN=hN$ is the image of $h$ in $H$. We also know that $phi$ is a homomorphism because
$$phi(hh')=hh'N=hNh'N=phi(h)phi(h')$$
By the First Isomorphism Theorem, the image of $phi$ is isomorphic to $H/kerphi$, that is
$$HN/N=phi(H)cong H/kerphi$$
Since
$$kerphi=hin H:hin N=Hcap N$$
$HN/N=phi(H)cong H/Hcap N$
My question:
Is it necessary to prove that the map $phi$ is onto? Can we only prove that $phi$ is well defined and the image of $phi$ is a subset of $HN/N$? And then we can use the First Isomorphism Theorem and continue the proof.
Thank you.
abstract-algebra group-theory group-isomorphism group-homomorphism
abstract-algebra group-theory group-isomorphism group-homomorphism
New contributor
New contributor
edited 4 hours ago
Andrews
1,2761421
1,2761421
New contributor
asked 4 hours ago
NiaBieNiaBie
232
232
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
add a comment |
$begingroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
$endgroup$
The First Isomorphism Theorem states that if $varphi: G to G'$, then $mathrmim(varphi) cong G/mathrmker(varphi)$. If we do not know that your $phi$ is surjective, then the First Isomorphism Theorem only shows us that $H/H cap N cong mathrmim(phi) subseteq HN/N$, which does not finish the job.
answered 4 hours ago
Joshua MundingerJoshua Mundinger
2,7621028
2,7621028
add a comment |
add a comment |
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
NiaBie is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3160013%2fquestion-about-the-proof-of-second-isomorphism-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown