Longest common substring in linear timeComputing the longest common substring of two strings using suffix arraysFind longest common substring using a rolling hashWhich algorithm to use to find all common substring (LCS case) with really big stringsFinding the longest repeating subsequenceHow to find longest recurring pattern from lage string data set?Longest substring with consecutive repetitionsDoes the Longest Common Subsequence problem reduce to its binary version?Substring problems in suffix treesNumber of optimal solutions for Longest Common Subsequence (Substring) problemLongest common sequence matrix giving wrong answer

Why is it that I can sometimes guess the next note?

Longest common substring in linear time

Melting point of aspirin, contradicting sources

Why does the Sun have different day lengths, but not the gas giants?

What prevents the use of a multi-segment ILS for non-straight approaches?

What was this official D&D 3.5e Lovecraft-flavored rulebook?

Is there a name for this algorithm to calculate the concentration of a mixture of two solutions containing the same solute?

dpdt switch to spst switch

Freedom of speech and where it applies

What is Cash Advance APR?

Should I outline or discovery write my stories?

How to indicate a cut out for a product window

Did arcade monitors have same pixel aspect ratio as TV sets?

If a character has darkvision, can they see through an area of nonmagical darkness filled with lightly obscuring gas?

Fear of getting stuck on one programming language / technology that is not used in my country

Redundant comparison & "if" before assignment

What are the purposes of autoencoders?

Terse Method to Swap Lowest for Highest?

Is it possible to have a strip of cold climate in the middle of a planet?

Can I sign legal documents with a smiley face?

Why did the EU agree to delay the Brexit deadline?

How to implement a feedback to keep the DC gain at zero for this conceptual passive filter?

How can "mimic phobia" be cured or prevented?

250 Floor Tower



Longest common substring in linear time


Computing the longest common substring of two strings using suffix arraysFind longest common substring using a rolling hashWhich algorithm to use to find all common substring (LCS case) with really big stringsFinding the longest repeating subsequenceHow to find longest recurring pattern from lage string data set?Longest substring with consecutive repetitionsDoes the Longest Common Subsequence problem reduce to its binary version?Substring problems in suffix treesNumber of optimal solutions for Longest Common Subsequence (Substring) problemLongest common sequence matrix giving wrong answer













2












$begingroup$


We know that the longest common substring of two strings can be found in O(N^2) time complexity.
Can a solution be found in only linear time?










share|cite|improve this question











$endgroup$
















    2












    $begingroup$


    We know that the longest common substring of two strings can be found in O(N^2) time complexity.
    Can a solution be found in only linear time?










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$


      We know that the longest common substring of two strings can be found in O(N^2) time complexity.
      Can a solution be found in only linear time?










      share|cite|improve this question











      $endgroup$




      We know that the longest common substring of two strings can be found in O(N^2) time complexity.
      Can a solution be found in only linear time?







      algorithms time-complexity strings longest-common-substring






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      Discrete lizard

      4,44011537




      4,44011537










      asked 2 hours ago









      Manoharsinh RanaManoharsinh Rana

      917




      917




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.



          Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.




          The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.




          Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
            $endgroup$
            – Apass.Jack
            34 mins ago



















          1












          $begingroup$

          It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).



          SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.




          While finding a substring is a slightly different problem, it seems likely to be equally hard.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            are you talking about subsequence? I am talking about substring.
            $endgroup$
            – Manoharsinh Rana
            1 hour ago











          • $begingroup$
            @ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
            $endgroup$
            – Discrete lizard
            1 hour ago










          • $begingroup$
            Longest common substring is much easier than longest common subsequence. See my answer.
            $endgroup$
            – D.W.
            37 mins ago


















          1












          $begingroup$

          Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem



          In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).



          Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)






          share|cite|improve this answer









          $endgroup$












            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "419"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105969%2flongest-common-substring-in-linear-time%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.



            Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.




            The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.




            Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
              $endgroup$
              – Apass.Jack
              34 mins ago
















            2












            $begingroup$

            Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.



            Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.




            The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.




            Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
              $endgroup$
              – Apass.Jack
              34 mins ago














            2












            2








            2





            $begingroup$

            Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.



            Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.




            The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.




            Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.






            share|cite|improve this answer









            $endgroup$



            Yes, the longest common substring of two strings can be found in $O(m+n)$ time, where $m$ and $n$ are the lengths of the two strings, assuming the size of the alphabet is constant.



            Here is an excerpt from https://en.wikipedia.org/wiki/Longest_common_substring_problem.




            The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it.




            Building a generalized suffix tree for two given strings takes $Theta(m+n)$ time using the famous ingenious Ukkonen's algorithm. Finding the deepest internal nodes that come from both strings takes $Theta(m+n)$ time. Hence we can find the longest common substring in $Theta(m+n)$ time.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 38 mins ago









            Apass.JackApass.Jack

            13.3k1939




            13.3k1939











            • $begingroup$
              I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
              $endgroup$
              – Apass.Jack
              34 mins ago

















            • $begingroup$
              I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
              $endgroup$
              – Apass.Jack
              34 mins ago
















            $begingroup$
            I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
            $endgroup$
            – Apass.Jack
            34 mins ago





            $begingroup$
            I did not see @D.W's answer, possibly because I was interrupted while writing my answer.
            $endgroup$
            – Apass.Jack
            34 mins ago












            1












            $begingroup$

            It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).



            SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.




            While finding a substring is a slightly different problem, it seems likely to be equally hard.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              are you talking about subsequence? I am talking about substring.
              $endgroup$
              – Manoharsinh Rana
              1 hour ago











            • $begingroup$
              @ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
              $endgroup$
              – Discrete lizard
              1 hour ago










            • $begingroup$
              Longest common substring is much easier than longest common subsequence. See my answer.
              $endgroup$
              – D.W.
              37 mins ago















            1












            $begingroup$

            It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).



            SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.




            While finding a substring is a slightly different problem, it seems likely to be equally hard.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              are you talking about subsequence? I am talking about substring.
              $endgroup$
              – Manoharsinh Rana
              1 hour ago











            • $begingroup$
              @ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
              $endgroup$
              – Discrete lizard
              1 hour ago










            • $begingroup$
              Longest common substring is much easier than longest common subsequence. See my answer.
              $endgroup$
              – D.W.
              37 mins ago













            1












            1








            1





            $begingroup$

            It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).



            SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.




            While finding a substring is a slightly different problem, it seems likely to be equally hard.






            share|cite|improve this answer











            $endgroup$



            It is unlikely that that a better algorithm than quadratic exists, let alone linear. For the related problem of finding subsequences, this is a known result: In the paper "Tight hardness results for LCS and other sequence similarity measures." by Abboud et al. , they show that the existence of an algorithm with a running time of $O(n^2-varepsilon)$, for some $varepsilon>0$ refutes the Strong Exponential Time Hypothesis (SETH).



            SETH is considered to be very likely true (although not universally accepted), so it is unlikely any $O(n^2-varepsilon)$ time algorithm exists.




            While finding a substring is a slightly different problem, it seems likely to be equally hard.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 1 hour ago

























            answered 2 hours ago









            Discrete lizardDiscrete lizard

            4,44011537




            4,44011537











            • $begingroup$
              are you talking about subsequence? I am talking about substring.
              $endgroup$
              – Manoharsinh Rana
              1 hour ago











            • $begingroup$
              @ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
              $endgroup$
              – Discrete lizard
              1 hour ago










            • $begingroup$
              Longest common substring is much easier than longest common subsequence. See my answer.
              $endgroup$
              – D.W.
              37 mins ago
















            • $begingroup$
              are you talking about subsequence? I am talking about substring.
              $endgroup$
              – Manoharsinh Rana
              1 hour ago











            • $begingroup$
              @ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
              $endgroup$
              – Discrete lizard
              1 hour ago










            • $begingroup$
              Longest common substring is much easier than longest common subsequence. See my answer.
              $endgroup$
              – D.W.
              37 mins ago















            $begingroup$
            are you talking about subsequence? I am talking about substring.
            $endgroup$
            – Manoharsinh Rana
            1 hour ago





            $begingroup$
            are you talking about subsequence? I am talking about substring.
            $endgroup$
            – Manoharsinh Rana
            1 hour ago













            $begingroup$
            @ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
            $endgroup$
            – Discrete lizard
            1 hour ago




            $begingroup$
            @ManoharsinhRana Ah, I see. The problems are similar, and it is hard to find results for the string variant. I think there are similar results for the substring problem, but they are not easy to find. You could try looking at papers that cite "Quadratic conditional lower bounds for string problems and dynamic time warping" by Bringmann and Künnemann, as their program lead to a lot of results related to this problem.
            $endgroup$
            – Discrete lizard
            1 hour ago












            $begingroup$
            Longest common substring is much easier than longest common subsequence. See my answer.
            $endgroup$
            – D.W.
            37 mins ago




            $begingroup$
            Longest common substring is much easier than longest common subsequence. See my answer.
            $endgroup$
            – D.W.
            37 mins ago











            1












            $begingroup$

            Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem



            In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).



            Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)






            share|cite|improve this answer









            $endgroup$

















              1












              $begingroup$

              Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem



              In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).



              Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)






              share|cite|improve this answer









              $endgroup$















                1












                1








                1





                $begingroup$

                Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem



                In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).



                Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)






                share|cite|improve this answer









                $endgroup$



                Yes. There's even a Wikipedia article about it! https://en.wikipedia.org/wiki/Longest_common_substring_problem



                In particular, as Wikipedia explains, there is a linear-time algorithm, using suffix trees (or suffix arrays).



                Searching on "longest common substring" turns up that Wikipedia article as the first hit (for me). In the future, please research the problem before asking here. (See, e.g., https://meta.stackoverflow.com/q/261592/781723.)







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 56 mins ago









                D.W.D.W.

                102k12127291




                102k12127291



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f105969%2flongest-common-substring-in-linear-time%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                    Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                    Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko