How can I get precisely a certain cubic cm by changing the following factors?Validity of proof for surface area of a sphereAngle and circle intersection, find the circular segment areaCuboid: Given Volume, Surface Area, length of one side / Find remaining sidesDecomposition if matrix with strongly correlated columnsTwo approaches to the Volume of a Drilled Sphere (Self-Answered, open to other answers)Certain chords of a parameterized parabola pass through a common pointPigeonhole principle in geometric taskSolid Mensuration ProblemCalculus Parcel Optimisation ProblemHow to calculate volume of an intersection between a hyperrectangle and an N-dimensional ball in multiple dimensions

Are Boeing 737-800’s grounded?

What are the spoon bit of a spoon and fork bit of a fork called?

TikZ how to make supply and demand arrows for nodes?

What word means to make something obsolete?

Python "triplet" dictionary?

How can I get precisely a certain cubic cm by changing the following factors?

Pressure to defend the relevance of one's area of mathematics

Do I have an "anti-research" personality?

Sci-fi novel series with instant travel between planets through gates. A river runs through the gates

How to stop co-workers from teasing me because I know Russian?

Can solid acids and bases have pH values? If not, how are they classified as acids or bases?

Can not tell colimits from limits

Why does processed meat contain preservatives, while canned fish needs not?

Unexpected email from Yorkshire Bank

What is the strongest case that can be made in favour of the UK regaining some control over fishing policy after Brexit?

Toggle Overlays shortcut?

Pythonic way to find the last position in a string not matching a regex

Any examples of headwear for races with animal ears?

Why are the 2nd/3rd singular forms of present of « potere » irregular?

Stateful vs non-stateful app

Is it possible to measure lightning discharges as Nikola Tesla?

Packing rectangles: Does rotation ever help?

What is a Recurrent Neural Network?

Is there a way to get a compiler for the original B programming language?



How can I get precisely a certain cubic cm by changing the following factors?


Validity of proof for surface area of a sphereAngle and circle intersection, find the circular segment areaCuboid: Given Volume, Surface Area, length of one side / Find remaining sidesDecomposition if matrix with strongly correlated columnsTwo approaches to the Volume of a Drilled Sphere (Self-Answered, open to other answers)Certain chords of a parameterized parabola pass through a common pointPigeonhole principle in geometric taskSolid Mensuration ProblemCalculus Parcel Optimisation ProblemHow to calculate volume of an intersection between a hyperrectangle and an N-dimensional ball in multiple dimensions













2












$begingroup$


By a calculation of the size of the cubic cm which its sizes are: 3.8330 * 3.8330 * 5.17455, I got a volume of 76.02. How can I get precisely '''76.04''' cubic cm, by changing the first two mentioned factors (i.e. 3.8330 * 3.8330 * 5.17455) equally?



N.b. I tried many ways and I couldn't find it, always I got more or less but not precisely.










share|cite|improve this question









New contributor




Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    2












    $begingroup$


    By a calculation of the size of the cubic cm which its sizes are: 3.8330 * 3.8330 * 5.17455, I got a volume of 76.02. How can I get precisely '''76.04''' cubic cm, by changing the first two mentioned factors (i.e. 3.8330 * 3.8330 * 5.17455) equally?



    N.b. I tried many ways and I couldn't find it, always I got more or less but not precisely.










    share|cite|improve this question









    New contributor




    Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      2












      2








      2





      $begingroup$


      By a calculation of the size of the cubic cm which its sizes are: 3.8330 * 3.8330 * 5.17455, I got a volume of 76.02. How can I get precisely '''76.04''' cubic cm, by changing the first two mentioned factors (i.e. 3.8330 * 3.8330 * 5.17455) equally?



      N.b. I tried many ways and I couldn't find it, always I got more or less but not precisely.










      share|cite|improve this question









      New contributor




      Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      By a calculation of the size of the cubic cm which its sizes are: 3.8330 * 3.8330 * 5.17455, I got a volume of 76.02. How can I get precisely '''76.04''' cubic cm, by changing the first two mentioned factors (i.e. 3.8330 * 3.8330 * 5.17455) equally?



      N.b. I tried many ways and I couldn't find it, always I got more or less but not precisely.







      geometry






      share|cite|improve this question









      New contributor




      Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 39 mins ago







      Ubiquitous Student













      New contributor




      Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 hours ago









      Ubiquitous StudentUbiquitous Student

      1114




      1114




      New contributor




      Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Ubiquitous Student is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          You have $3.833 times 3.833 times5.174=76.02 .$



          You can change it by multiplying both sides by $displaystyle frac76.0476.02$.



          We then have $3.833 times 3.833 times5.174 times displaystyle frac76.0476.02=76.02 times displaystyle frac76.0476.02$.



          This comes out to $3.833 times 3.833 times5.17564=76.04 $






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            +1 Note that you can multiply any one of the three factors by $76.04/75.02$, although there's an aesthetic argument for keeping the first two equal.
            $endgroup$
            – Ethan Bolker
            1 hour ago










          • $begingroup$
            Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
            $endgroup$
            – Ubiquitous Student
            1 hour ago











          • $begingroup$
            @UbiquitousStudent do you want to change both of the first two parameters? or just one of them?
            $endgroup$
            – Saketh Malyala
            1 hour ago










          • $begingroup$
            you can multiply 3.833 by 76.04/76.02 instead
            $endgroup$
            – Saketh Malyala
            1 hour ago










          • $begingroup$
            You can take any two positive numbers $a$ and $b$, let $c = (76.04/76.02)/ab$ and then multiply each of the factors by $a$, $b$ and $c$. So you can make any two factors anything you like and adjust the third accordingly. If you want to keep the third factor the same and keep the first two equal, let $a = b =$ the square root of $76.04/76.02$.
            $endgroup$
            – Ethan Bolker
            1 hour ago



















          1












          $begingroup$

          Actually $3.833 cdot 3.833 cdot 5.174 = 76.0158$ so the added volume will be $.0242$



          One way is to think of it as adding a sheet $3.833 cdot 3.833$ with a volume of $0.0242 textcm^3$. How thick does it have to be to equal that volume?



          Hence, $frac0.02423.833^2 = .00165$



          So the dimensions will be $3.833 cdot 3.833 cdot (5.174 + .00165)$



          $3.833 cdot 3.833 cdot 5.17565 = 76.040$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
            $endgroup$
            – Ubiquitous Student
            1 hour ago



















          0












          $begingroup$

          To avoid getting caught-up in specific numbers ...




          Suppose you have
          $$acdot b cdot c = d$$
          but you want $d$ to become $e$. You can make this happen by multiplying both sides by $e/d$:
          $$left(acdot b cdot c right)cdot fraced = dcdotfraced = e$$



          Now, you can use the left-hand side's factor of $e/d$ to make adjustments to $a$, $b$, and/or $c$. If you just wanted to adjust one factor, you could write, say,




          $$left( acdot fracedright)cdot bcdot c ;=; e tag1$$




          If you wanted to adjust two factors proportionally (as is specifically requested in the question), you can "split" $e/d$ equally across the factors using a square root:




          $$fraced = sqrtfracedcdotsqrtfraced qquadtoqquadleft(acdot sqrtfracedright)cdotleft(bcdot sqrtfracedright)cdot c ;=; e tag2$$




          Finally, if you later decide you actually want to adjust your entire box proportionally, you can use cube roots:




          $$left(acdotsqrt[3]fracedright)cdotleft(bcdotsqrt[3]fracedright)cdot left(ccdotsqrt[3]fracedright) ;=; e tag3$$




          Naturally, the same type of thing works with any number of overall factors and desired adjustments, using higher-level roots as needed.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Ubiquitous Student is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3206088%2fhow-can-i-get-precisely-a-certain-cubic-cm-by-changing-the-following-factors%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            You have $3.833 times 3.833 times5.174=76.02 .$



            You can change it by multiplying both sides by $displaystyle frac76.0476.02$.



            We then have $3.833 times 3.833 times5.174 times displaystyle frac76.0476.02=76.02 times displaystyle frac76.0476.02$.



            This comes out to $3.833 times 3.833 times5.17564=76.04 $






            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              +1 Note that you can multiply any one of the three factors by $76.04/75.02$, although there's an aesthetic argument for keeping the first two equal.
              $endgroup$
              – Ethan Bolker
              1 hour ago










            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago











            • $begingroup$
              @UbiquitousStudent do you want to change both of the first two parameters? or just one of them?
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              you can multiply 3.833 by 76.04/76.02 instead
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              You can take any two positive numbers $a$ and $b$, let $c = (76.04/76.02)/ab$ and then multiply each of the factors by $a$, $b$ and $c$. So you can make any two factors anything you like and adjust the third accordingly. If you want to keep the third factor the same and keep the first two equal, let $a = b =$ the square root of $76.04/76.02$.
              $endgroup$
              – Ethan Bolker
              1 hour ago
















            2












            $begingroup$

            You have $3.833 times 3.833 times5.174=76.02 .$



            You can change it by multiplying both sides by $displaystyle frac76.0476.02$.



            We then have $3.833 times 3.833 times5.174 times displaystyle frac76.0476.02=76.02 times displaystyle frac76.0476.02$.



            This comes out to $3.833 times 3.833 times5.17564=76.04 $






            share|cite|improve this answer









            $endgroup$








            • 1




              $begingroup$
              +1 Note that you can multiply any one of the three factors by $76.04/75.02$, although there's an aesthetic argument for keeping the first two equal.
              $endgroup$
              – Ethan Bolker
              1 hour ago










            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago











            • $begingroup$
              @UbiquitousStudent do you want to change both of the first two parameters? or just one of them?
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              you can multiply 3.833 by 76.04/76.02 instead
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              You can take any two positive numbers $a$ and $b$, let $c = (76.04/76.02)/ab$ and then multiply each of the factors by $a$, $b$ and $c$. So you can make any two factors anything you like and adjust the third accordingly. If you want to keep the third factor the same and keep the first two equal, let $a = b =$ the square root of $76.04/76.02$.
              $endgroup$
              – Ethan Bolker
              1 hour ago














            2












            2








            2





            $begingroup$

            You have $3.833 times 3.833 times5.174=76.02 .$



            You can change it by multiplying both sides by $displaystyle frac76.0476.02$.



            We then have $3.833 times 3.833 times5.174 times displaystyle frac76.0476.02=76.02 times displaystyle frac76.0476.02$.



            This comes out to $3.833 times 3.833 times5.17564=76.04 $






            share|cite|improve this answer









            $endgroup$



            You have $3.833 times 3.833 times5.174=76.02 .$



            You can change it by multiplying both sides by $displaystyle frac76.0476.02$.



            We then have $3.833 times 3.833 times5.174 times displaystyle frac76.0476.02=76.02 times displaystyle frac76.0476.02$.



            This comes out to $3.833 times 3.833 times5.17564=76.04 $







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 2 hours ago









            Saketh MalyalaSaketh Malyala

            7,7041535




            7,7041535







            • 1




              $begingroup$
              +1 Note that you can multiply any one of the three factors by $76.04/75.02$, although there's an aesthetic argument for keeping the first two equal.
              $endgroup$
              – Ethan Bolker
              1 hour ago










            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago











            • $begingroup$
              @UbiquitousStudent do you want to change both of the first two parameters? or just one of them?
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              you can multiply 3.833 by 76.04/76.02 instead
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              You can take any two positive numbers $a$ and $b$, let $c = (76.04/76.02)/ab$ and then multiply each of the factors by $a$, $b$ and $c$. So you can make any two factors anything you like and adjust the third accordingly. If you want to keep the third factor the same and keep the first two equal, let $a = b =$ the square root of $76.04/76.02$.
              $endgroup$
              – Ethan Bolker
              1 hour ago













            • 1




              $begingroup$
              +1 Note that you can multiply any one of the three factors by $76.04/75.02$, although there's an aesthetic argument for keeping the first two equal.
              $endgroup$
              – Ethan Bolker
              1 hour ago










            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago











            • $begingroup$
              @UbiquitousStudent do you want to change both of the first two parameters? or just one of them?
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              you can multiply 3.833 by 76.04/76.02 instead
              $endgroup$
              – Saketh Malyala
              1 hour ago










            • $begingroup$
              You can take any two positive numbers $a$ and $b$, let $c = (76.04/76.02)/ab$ and then multiply each of the factors by $a$, $b$ and $c$. So you can make any two factors anything you like and adjust the third accordingly. If you want to keep the third factor the same and keep the first two equal, let $a = b =$ the square root of $76.04/76.02$.
              $endgroup$
              – Ethan Bolker
              1 hour ago








            1




            1




            $begingroup$
            +1 Note that you can multiply any one of the three factors by $76.04/75.02$, although there's an aesthetic argument for keeping the first two equal.
            $endgroup$
            – Ethan Bolker
            1 hour ago




            $begingroup$
            +1 Note that you can multiply any one of the three factors by $76.04/75.02$, although there's an aesthetic argument for keeping the first two equal.
            $endgroup$
            – Ethan Bolker
            1 hour ago












            $begingroup$
            Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
            $endgroup$
            – Ubiquitous Student
            1 hour ago





            $begingroup$
            Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
            $endgroup$
            – Ubiquitous Student
            1 hour ago













            $begingroup$
            @UbiquitousStudent do you want to change both of the first two parameters? or just one of them?
            $endgroup$
            – Saketh Malyala
            1 hour ago




            $begingroup$
            @UbiquitousStudent do you want to change both of the first two parameters? or just one of them?
            $endgroup$
            – Saketh Malyala
            1 hour ago












            $begingroup$
            you can multiply 3.833 by 76.04/76.02 instead
            $endgroup$
            – Saketh Malyala
            1 hour ago




            $begingroup$
            you can multiply 3.833 by 76.04/76.02 instead
            $endgroup$
            – Saketh Malyala
            1 hour ago












            $begingroup$
            You can take any two positive numbers $a$ and $b$, let $c = (76.04/76.02)/ab$ and then multiply each of the factors by $a$, $b$ and $c$. So you can make any two factors anything you like and adjust the third accordingly. If you want to keep the third factor the same and keep the first two equal, let $a = b =$ the square root of $76.04/76.02$.
            $endgroup$
            – Ethan Bolker
            1 hour ago





            $begingroup$
            You can take any two positive numbers $a$ and $b$, let $c = (76.04/76.02)/ab$ and then multiply each of the factors by $a$, $b$ and $c$. So you can make any two factors anything you like and adjust the third accordingly. If you want to keep the third factor the same and keep the first two equal, let $a = b =$ the square root of $76.04/76.02$.
            $endgroup$
            – Ethan Bolker
            1 hour ago












            1












            $begingroup$

            Actually $3.833 cdot 3.833 cdot 5.174 = 76.0158$ so the added volume will be $.0242$



            One way is to think of it as adding a sheet $3.833 cdot 3.833$ with a volume of $0.0242 textcm^3$. How thick does it have to be to equal that volume?



            Hence, $frac0.02423.833^2 = .00165$



            So the dimensions will be $3.833 cdot 3.833 cdot (5.174 + .00165)$



            $3.833 cdot 3.833 cdot 5.17565 = 76.040$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago
















            1












            $begingroup$

            Actually $3.833 cdot 3.833 cdot 5.174 = 76.0158$ so the added volume will be $.0242$



            One way is to think of it as adding a sheet $3.833 cdot 3.833$ with a volume of $0.0242 textcm^3$. How thick does it have to be to equal that volume?



            Hence, $frac0.02423.833^2 = .00165$



            So the dimensions will be $3.833 cdot 3.833 cdot (5.174 + .00165)$



            $3.833 cdot 3.833 cdot 5.17565 = 76.040$






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago














            1












            1








            1





            $begingroup$

            Actually $3.833 cdot 3.833 cdot 5.174 = 76.0158$ so the added volume will be $.0242$



            One way is to think of it as adding a sheet $3.833 cdot 3.833$ with a volume of $0.0242 textcm^3$. How thick does it have to be to equal that volume?



            Hence, $frac0.02423.833^2 = .00165$



            So the dimensions will be $3.833 cdot 3.833 cdot (5.174 + .00165)$



            $3.833 cdot 3.833 cdot 5.17565 = 76.040$






            share|cite|improve this answer









            $endgroup$



            Actually $3.833 cdot 3.833 cdot 5.174 = 76.0158$ so the added volume will be $.0242$



            One way is to think of it as adding a sheet $3.833 cdot 3.833$ with a volume of $0.0242 textcm^3$. How thick does it have to be to equal that volume?



            Hence, $frac0.02423.833^2 = .00165$



            So the dimensions will be $3.833 cdot 3.833 cdot (5.174 + .00165)$



            $3.833 cdot 3.833 cdot 5.17565 = 76.040$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            Phil HPhil H

            4,3752412




            4,3752412











            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago

















            • $begingroup$
              Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
              $endgroup$
              – Ubiquitous Student
              1 hour ago
















            $begingroup$
            Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
            $endgroup$
            – Ubiquitous Student
            1 hour ago





            $begingroup$
            Thank you very much for you answer (1+^). Is there a way to add change the first two parameters (3.833*3.833)? I mean even-though it'll be the same size, but if I want to change these dimensions is important.
            $endgroup$
            – Ubiquitous Student
            1 hour ago












            0












            $begingroup$

            To avoid getting caught-up in specific numbers ...




            Suppose you have
            $$acdot b cdot c = d$$
            but you want $d$ to become $e$. You can make this happen by multiplying both sides by $e/d$:
            $$left(acdot b cdot c right)cdot fraced = dcdotfraced = e$$



            Now, you can use the left-hand side's factor of $e/d$ to make adjustments to $a$, $b$, and/or $c$. If you just wanted to adjust one factor, you could write, say,




            $$left( acdot fracedright)cdot bcdot c ;=; e tag1$$




            If you wanted to adjust two factors proportionally (as is specifically requested in the question), you can "split" $e/d$ equally across the factors using a square root:




            $$fraced = sqrtfracedcdotsqrtfraced qquadtoqquadleft(acdot sqrtfracedright)cdotleft(bcdot sqrtfracedright)cdot c ;=; e tag2$$




            Finally, if you later decide you actually want to adjust your entire box proportionally, you can use cube roots:




            $$left(acdotsqrt[3]fracedright)cdotleft(bcdotsqrt[3]fracedright)cdot left(ccdotsqrt[3]fracedright) ;=; e tag3$$




            Naturally, the same type of thing works with any number of overall factors and desired adjustments, using higher-level roots as needed.






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              To avoid getting caught-up in specific numbers ...




              Suppose you have
              $$acdot b cdot c = d$$
              but you want $d$ to become $e$. You can make this happen by multiplying both sides by $e/d$:
              $$left(acdot b cdot c right)cdot fraced = dcdotfraced = e$$



              Now, you can use the left-hand side's factor of $e/d$ to make adjustments to $a$, $b$, and/or $c$. If you just wanted to adjust one factor, you could write, say,




              $$left( acdot fracedright)cdot bcdot c ;=; e tag1$$




              If you wanted to adjust two factors proportionally (as is specifically requested in the question), you can "split" $e/d$ equally across the factors using a square root:




              $$fraced = sqrtfracedcdotsqrtfraced qquadtoqquadleft(acdot sqrtfracedright)cdotleft(bcdot sqrtfracedright)cdot c ;=; e tag2$$




              Finally, if you later decide you actually want to adjust your entire box proportionally, you can use cube roots:




              $$left(acdotsqrt[3]fracedright)cdotleft(bcdotsqrt[3]fracedright)cdot left(ccdotsqrt[3]fracedright) ;=; e tag3$$




              Naturally, the same type of thing works with any number of overall factors and desired adjustments, using higher-level roots as needed.






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                To avoid getting caught-up in specific numbers ...




                Suppose you have
                $$acdot b cdot c = d$$
                but you want $d$ to become $e$. You can make this happen by multiplying both sides by $e/d$:
                $$left(acdot b cdot c right)cdot fraced = dcdotfraced = e$$



                Now, you can use the left-hand side's factor of $e/d$ to make adjustments to $a$, $b$, and/or $c$. If you just wanted to adjust one factor, you could write, say,




                $$left( acdot fracedright)cdot bcdot c ;=; e tag1$$




                If you wanted to adjust two factors proportionally (as is specifically requested in the question), you can "split" $e/d$ equally across the factors using a square root:




                $$fraced = sqrtfracedcdotsqrtfraced qquadtoqquadleft(acdot sqrtfracedright)cdotleft(bcdot sqrtfracedright)cdot c ;=; e tag2$$




                Finally, if you later decide you actually want to adjust your entire box proportionally, you can use cube roots:




                $$left(acdotsqrt[3]fracedright)cdotleft(bcdotsqrt[3]fracedright)cdot left(ccdotsqrt[3]fracedright) ;=; e tag3$$




                Naturally, the same type of thing works with any number of overall factors and desired adjustments, using higher-level roots as needed.






                share|cite|improve this answer









                $endgroup$



                To avoid getting caught-up in specific numbers ...




                Suppose you have
                $$acdot b cdot c = d$$
                but you want $d$ to become $e$. You can make this happen by multiplying both sides by $e/d$:
                $$left(acdot b cdot c right)cdot fraced = dcdotfraced = e$$



                Now, you can use the left-hand side's factor of $e/d$ to make adjustments to $a$, $b$, and/or $c$. If you just wanted to adjust one factor, you could write, say,




                $$left( acdot fracedright)cdot bcdot c ;=; e tag1$$




                If you wanted to adjust two factors proportionally (as is specifically requested in the question), you can "split" $e/d$ equally across the factors using a square root:




                $$fraced = sqrtfracedcdotsqrtfraced qquadtoqquadleft(acdot sqrtfracedright)cdotleft(bcdot sqrtfracedright)cdot c ;=; e tag2$$




                Finally, if you later decide you actually want to adjust your entire box proportionally, you can use cube roots:




                $$left(acdotsqrt[3]fracedright)cdotleft(bcdotsqrt[3]fracedright)cdot left(ccdotsqrt[3]fracedright) ;=; e tag3$$




                Naturally, the same type of thing works with any number of overall factors and desired adjustments, using higher-level roots as needed.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 19 mins ago









                BlueBlue

                49.8k970158




                49.8k970158




















                    Ubiquitous Student is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Ubiquitous Student is a new contributor. Be nice, and check out our Code of Conduct.












                    Ubiquitous Student is a new contributor. Be nice, and check out our Code of Conduct.











                    Ubiquitous Student is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3206088%2fhow-can-i-get-precisely-a-certain-cubic-cm-by-changing-the-following-factors%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                    Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                    Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko