Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers? The 2019 Stack Overflow Developer Survey Results Are InHow to find a random axis or unit vector in 3D?Picking random points in the volume of sphere with uniform probabilityIs a sphere a closed set?Random Point Sampling From a Set with Certain GeometryHow to Create a Plane Inside A CubeAlgorithm to generate random points in n-Sphere?Sampling on Axis-Aligned Spherical QuadRandom 3D points uniformly distributed on an ellipse shaped window of a sphereCompensating for distortion when projecting a 2D texture onto a sphereFind the relative radial position of a point within an ellipsoid

For what reasons would an animal species NOT cross a *horizontal* land bridge?

Why can't devices on different VLANs, but on the same subnet, communicate?

How do I free up internal storage if I don't have any apps downloaded?

Is it okay to consider publishing in my first year of PhD?

Unitary representations of finite groups over finite fields

Inverse Relationship Between Precision and Recall

How to support a colleague who finds meetings extremely tiring?

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past

Are spiders unable to hurt humans, especially very small spiders?

How to notate time signature switching consistently every measure

Can there be female White Walkers?

Getting crown tickets for Statue of Liberty

I am an eight letter word. What am I?

Will it cause any balance problems to have PCs level up and gain the benefits of a long rest mid-fight?

How do you keep chess fun when your opponent constantly beats you?

Kerning for subscripts of sigma?

How to obtain a position of last non-zero element

Can a flute soloist sit?

Is there a way to generate a point on a sphere from a fixed amount of random real numbers?

Dropping list elements from nested list after evaluation

Are there any other methods to apply to solving simultaneous equations?

Why does the nucleus not repel itself?

If my opponent casts Ultimate Price on my Phantasmal Bear, can I save it by casting Snap or Curfew?

The difference between dialogue marks



Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?



The 2019 Stack Overflow Developer Survey Results Are InHow to find a random axis or unit vector in 3D?Picking random points in the volume of sphere with uniform probabilityIs a sphere a closed set?Random Point Sampling From a Set with Certain GeometryHow to Create a Plane Inside A CubeAlgorithm to generate random points in n-Sphere?Sampling on Axis-Aligned Spherical QuadRandom 3D points uniformly distributed on an ellipse shaped window of a sphereCompensating for distortion when projecting a 2D texture onto a sphereFind the relative radial position of a point within an ellipsoid










2












$begingroup$


The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.










share|cite|improve this question











$endgroup$











  • $begingroup$
    So what you want is a uniform distribution. It would be helpful to state this explicitly.
    $endgroup$
    – robjohn
    2 hours ago






  • 1




    $begingroup$
    Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
    $endgroup$
    – robjohn
    2 hours ago










  • $begingroup$
    @robjohn thank you, you're right that I forgot to specify that.
    $endgroup$
    – The Zach Man
    22 mins ago















2












$begingroup$


The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.










share|cite|improve this question











$endgroup$











  • $begingroup$
    So what you want is a uniform distribution. It would be helpful to state this explicitly.
    $endgroup$
    – robjohn
    2 hours ago






  • 1




    $begingroup$
    Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
    $endgroup$
    – robjohn
    2 hours ago










  • $begingroup$
    @robjohn thank you, you're right that I forgot to specify that.
    $endgroup$
    – The Zach Man
    22 mins ago













2












2








2


1



$begingroup$


The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.










share|cite|improve this question











$endgroup$




The obvious solution of Lattitude & Longitude doesn't work because it generates points more densely near the poles, and the other thing I came up with (Pick a random point in the unit cube, if it's in the sphere map it to the surface, and restart if it's outside) doesn't always find a point within a fixed number of tries.







geometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 mins ago









robjohn

271k27313642




271k27313642










asked 2 hours ago









The Zach ManThe Zach Man

1007




1007











  • $begingroup$
    So what you want is a uniform distribution. It would be helpful to state this explicitly.
    $endgroup$
    – robjohn
    2 hours ago






  • 1




    $begingroup$
    Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
    $endgroup$
    – robjohn
    2 hours ago










  • $begingroup$
    @robjohn thank you, you're right that I forgot to specify that.
    $endgroup$
    – The Zach Man
    22 mins ago
















  • $begingroup$
    So what you want is a uniform distribution. It would be helpful to state this explicitly.
    $endgroup$
    – robjohn
    2 hours ago






  • 1




    $begingroup$
    Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
    $endgroup$
    – robjohn
    2 hours ago










  • $begingroup$
    @robjohn thank you, you're right that I forgot to specify that.
    $endgroup$
    – The Zach Man
    22 mins ago















$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn
2 hours ago




$begingroup$
So what you want is a uniform distribution. It would be helpful to state this explicitly.
$endgroup$
– robjohn
2 hours ago




1




1




$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn
2 hours ago




$begingroup$
Distribute longitude uniformly and the sine of the latitude uniformly. Then the distribution of points on the sphere will be uniform.
$endgroup$
– robjohn
2 hours ago












$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
22 mins ago




$begingroup$
@robjohn thank you, you're right that I forgot to specify that.
$endgroup$
– The Zach Man
22 mins ago










2 Answers
2






active

oldest

votes


















2












$begingroup$

The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.



For $(u_1,u_2)$ uniform on $[0,1]^2$, either



$mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$



or



$z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.



    Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.



    (The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184449%2fis-there-a-way-to-generate-a-uniformly-distributed-point-on-a-sphere-from-a-fixe%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      2












      $begingroup$

      The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.



      For $(u_1,u_2)$ uniform on $[0,1]^2$, either



      $mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$



      or



      $z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$






      share|cite|improve this answer









      $endgroup$

















        2












        $begingroup$

        The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.



        For $(u_1,u_2)$ uniform on $[0,1]^2$, either



        $mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$



        or



        $z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$






        share|cite|improve this answer









        $endgroup$















          2












          2








          2





          $begingroup$

          The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.



          For $(u_1,u_2)$ uniform on $[0,1]^2$, either



          $mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$



          or



          $z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$






          share|cite|improve this answer









          $endgroup$



          The Lambert cylindrical equal area projection maps the sphere to a cylinder, area to equal area. It is easy to generate a uniform distribution on a cylinder. Simply map it back to the sphere.



          For $(u_1,u_2)$ uniform on $[0,1]^2$, either



          $mathrmlat=arcsin(2u_1-1),mathrmlon=2pi u_2$



          or



          $z=2u_1-1,x=sqrt1-z^2cos(2pi u_2),y=sqrt1-z^2sin(2pi u_2)$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 37 mins ago









          robjohnrobjohn

          271k27313642




          271k27313642





















              2












              $begingroup$

              Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.



              Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.



              (The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.



                Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.



                (The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.



                  Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.



                  (The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)






                  share|cite|improve this answer









                  $endgroup$



                  Your method, even though it doesn't finish in a fixed number of times, is a reasonable way to do it. Each trial succeeds with probability $fracpi6$, which is better than $frac12$: the average number of trials is less than $2$.



                  Another standard method is to use the normal distribution. Generate $x, y, z$ independently from a standard normal distribution, then take the point $(x,y,z)$ and divide it by $sqrtx^2+y^2+z^2$ as you did for points inside the cube. The multivariate normal distribution is rotationally symmetric, so this will get you evenly distributed points on the sphere.



                  (The Box–Muller transform is one way to generate normally distributed random numbers, and some versions of it do not use rejection sampling, so they can be done with a "fixed amount" of randomness.)







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 2 hours ago









                  Misha LavrovMisha Lavrov

                  49k757107




                  49k757107



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184449%2fis-there-a-way-to-generate-a-uniformly-distributed-point-on-a-sphere-from-a-fixe%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                      Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                      Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko