Limit to 0 ambiguity The 2019 Stack Overflow Developer Survey Results Are InNeed help with a limitHow to evaluate indeterminate form of a limitThe limit of $ lnx + cotx$Limit of a rational function to the power of xEvaluating the limit of $lim_xtoinfty(sqrtfracx^3x+2-x)$.Evaluate the following limit without L'HopitalLimit of: $ -x+sqrtx^2+x $ for $ xtoinfty $Limit with integral and powerWhat is the result of the following limit?Determining if a multivariable limit exists

Realistic Alternatives to Dust: What Else Could Feed a Plankton Bloom?

How are circuits which use complex ICs normally simulated?

How to create dashed lines/arrows in Illustrator

How can I fix this gap between bookcases I made?

How to make payment on the internet without leaving a money trail?

Why is my p-value correlated to difference between means in two sample tests?

What tool would a Roman-age civilization have to grind silver and other metals into dust?

Where does the "burst of radiance" from Holy Weapon originate?

I looked up a future colleague on LinkedIn before I started a job. I told my colleague about it and he seemed surprised. Should I apologize?

Springs with some finite mass

Is "plugging out" electronic devices an American expression?

Could JWST stay at L2 "forever"?

How to change the limits of integration

Carnot-Caratheodory metric

Time travel alters history but people keep saying nothing's changed

Why could you hear an Amstrad CPC working?

Does it makes sense to buy a new cycle to learn riding?

Can the Protection from Evil and Good spell be used on the caster?

Why is it "Tumoren" and not "Tumore"?

How can I create a character who can assume the widest possible range of creature sizes?

What is the best strategy for white in this position?

aging parents with no investments

Extreme, unacceptable situation and I can't attend work tomorrow morning

How do you say "canon" as in "official for a story universe"?



Limit to 0 ambiguity



The 2019 Stack Overflow Developer Survey Results Are InNeed help with a limitHow to evaluate indeterminate form of a limitThe limit of $ lnx + cotx$Limit of a rational function to the power of xEvaluating the limit of $lim_xtoinfty(sqrtfracx^3x+2-x)$.Evaluate the following limit without L'HopitalLimit of: $ -x+sqrtx^2+x $ for $ xtoinfty $Limit with integral and powerWhat is the result of the following limit?Determining if a multivariable limit exists










1












$begingroup$


I can't determine the limit of such form:
$$lim_x to 0 frac1x, $$
$$+infty~textor -infty$$
I tried to get around it, no success.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Simply: the limit does not exist. You can say that $$lim_xto 0^+ frac1x=infty$$ and $$lim_xto 0^- frac1x=-infty.$$
    $endgroup$
    – Dave
    3 hours ago






  • 3




    $begingroup$
    How are you defining a limit?
    $endgroup$
    – John Doe
    3 hours ago










  • $begingroup$
    Just to 0, that s what I am asking for, as it is clear, it doesn t exist.
    $endgroup$
    – J.Moh
    3 hours ago















1












$begingroup$


I can't determine the limit of such form:
$$lim_x to 0 frac1x, $$
$$+infty~textor -infty$$
I tried to get around it, no success.










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Simply: the limit does not exist. You can say that $$lim_xto 0^+ frac1x=infty$$ and $$lim_xto 0^- frac1x=-infty.$$
    $endgroup$
    – Dave
    3 hours ago






  • 3




    $begingroup$
    How are you defining a limit?
    $endgroup$
    – John Doe
    3 hours ago










  • $begingroup$
    Just to 0, that s what I am asking for, as it is clear, it doesn t exist.
    $endgroup$
    – J.Moh
    3 hours ago













1












1








1





$begingroup$


I can't determine the limit of such form:
$$lim_x to 0 frac1x, $$
$$+infty~textor -infty$$
I tried to get around it, no success.










share|cite|improve this question











$endgroup$




I can't determine the limit of such form:
$$lim_x to 0 frac1x, $$
$$+infty~textor -infty$$
I tried to get around it, no success.







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago









user8718165

1167




1167










asked 3 hours ago









J.MohJ.Moh

505




505







  • 1




    $begingroup$
    Simply: the limit does not exist. You can say that $$lim_xto 0^+ frac1x=infty$$ and $$lim_xto 0^- frac1x=-infty.$$
    $endgroup$
    – Dave
    3 hours ago






  • 3




    $begingroup$
    How are you defining a limit?
    $endgroup$
    – John Doe
    3 hours ago










  • $begingroup$
    Just to 0, that s what I am asking for, as it is clear, it doesn t exist.
    $endgroup$
    – J.Moh
    3 hours ago












  • 1




    $begingroup$
    Simply: the limit does not exist. You can say that $$lim_xto 0^+ frac1x=infty$$ and $$lim_xto 0^- frac1x=-infty.$$
    $endgroup$
    – Dave
    3 hours ago






  • 3




    $begingroup$
    How are you defining a limit?
    $endgroup$
    – John Doe
    3 hours ago










  • $begingroup$
    Just to 0, that s what I am asking for, as it is clear, it doesn t exist.
    $endgroup$
    – J.Moh
    3 hours ago







1




1




$begingroup$
Simply: the limit does not exist. You can say that $$lim_xto 0^+ frac1x=infty$$ and $$lim_xto 0^- frac1x=-infty.$$
$endgroup$
– Dave
3 hours ago




$begingroup$
Simply: the limit does not exist. You can say that $$lim_xto 0^+ frac1x=infty$$ and $$lim_xto 0^- frac1x=-infty.$$
$endgroup$
– Dave
3 hours ago




3




3




$begingroup$
How are you defining a limit?
$endgroup$
– John Doe
3 hours ago




$begingroup$
How are you defining a limit?
$endgroup$
– John Doe
3 hours ago












$begingroup$
Just to 0, that s what I am asking for, as it is clear, it doesn t exist.
$endgroup$
– J.Moh
3 hours ago




$begingroup$
Just to 0, that s what I am asking for, as it is clear, it doesn t exist.
$endgroup$
– J.Moh
3 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

The limit does not exist (even allowing for an infinite limit, which some definitions may not allow) since it depends on the direction of approach, as you have observed.






share|cite|improve this answer









$endgroup$




















    3












    $begingroup$

    It's instructive to take a look at the graph of $f(x)=frac1x$ to better see what exactly is going on with the function as $x$ goes to zero:



    enter image description here



    As you can probably guess, this limit should be split into two one-sided limits for a proper analysis because the function behaves differently depending on which side you approach the value of zero from. As $x$ approaches $0$ from the left (denoted by $xto 0^-$), the function grows without bound negatively. As $x$ approaches $0$ from the right (denoted by $xto 0^+$), the function grows without bound positively. Analytically, this fact is written as follows:



    $$lim_xto 0^-frac1x=-infty, lim_xto 0^+frac1x=+infty.$$



    For a limit to exist as $x$ approaches a particular point, the two one-sided limits at that point must be equal. Apparently, $lim_xto 0^-frac1xnelim_xto 0^+frac1x$. Thus, $lim_xto 0frac1x=DNE$ (does not exist).



    Strictly speaking, infinite limits are also considered limits that do not exist (a limit that exists should be a number and infinity is not a number). Nevertheless, we still write the equality sign and denote what kind of infinity the function is going to. This helps us better understand the behavior of the function. For example, $lim_xto 2g(x)=-infty$ means that as $x$ approaches $2$ from both sides (from the left and from the right), the function $g(x)$ keeps growing without bound negatively. "It goes to negative infinity" is a simpler way to put it. And this is valuable information because it tells us something about the behavior of the function. It's better to know what kind of infinity a function is going off to than just stating the fact that it simply does not exist.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Thank you so much!!!
      $endgroup$
      – J.Moh
      2 hours ago











    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181778%2flimit-to-0-ambiguity%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    The limit does not exist (even allowing for an infinite limit, which some definitions may not allow) since it depends on the direction of approach, as you have observed.






    share|cite|improve this answer









    $endgroup$

















      3












      $begingroup$

      The limit does not exist (even allowing for an infinite limit, which some definitions may not allow) since it depends on the direction of approach, as you have observed.






      share|cite|improve this answer









      $endgroup$















        3












        3








        3





        $begingroup$

        The limit does not exist (even allowing for an infinite limit, which some definitions may not allow) since it depends on the direction of approach, as you have observed.






        share|cite|improve this answer









        $endgroup$



        The limit does not exist (even allowing for an infinite limit, which some definitions may not allow) since it depends on the direction of approach, as you have observed.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 3 hours ago









        MPWMPW

        31.2k12157




        31.2k12157





















            3












            $begingroup$

            It's instructive to take a look at the graph of $f(x)=frac1x$ to better see what exactly is going on with the function as $x$ goes to zero:



            enter image description here



            As you can probably guess, this limit should be split into two one-sided limits for a proper analysis because the function behaves differently depending on which side you approach the value of zero from. As $x$ approaches $0$ from the left (denoted by $xto 0^-$), the function grows without bound negatively. As $x$ approaches $0$ from the right (denoted by $xto 0^+$), the function grows without bound positively. Analytically, this fact is written as follows:



            $$lim_xto 0^-frac1x=-infty, lim_xto 0^+frac1x=+infty.$$



            For a limit to exist as $x$ approaches a particular point, the two one-sided limits at that point must be equal. Apparently, $lim_xto 0^-frac1xnelim_xto 0^+frac1x$. Thus, $lim_xto 0frac1x=DNE$ (does not exist).



            Strictly speaking, infinite limits are also considered limits that do not exist (a limit that exists should be a number and infinity is not a number). Nevertheless, we still write the equality sign and denote what kind of infinity the function is going to. This helps us better understand the behavior of the function. For example, $lim_xto 2g(x)=-infty$ means that as $x$ approaches $2$ from both sides (from the left and from the right), the function $g(x)$ keeps growing without bound negatively. "It goes to negative infinity" is a simpler way to put it. And this is valuable information because it tells us something about the behavior of the function. It's better to know what kind of infinity a function is going off to than just stating the fact that it simply does not exist.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thank you so much!!!
              $endgroup$
              – J.Moh
              2 hours ago















            3












            $begingroup$

            It's instructive to take a look at the graph of $f(x)=frac1x$ to better see what exactly is going on with the function as $x$ goes to zero:



            enter image description here



            As you can probably guess, this limit should be split into two one-sided limits for a proper analysis because the function behaves differently depending on which side you approach the value of zero from. As $x$ approaches $0$ from the left (denoted by $xto 0^-$), the function grows without bound negatively. As $x$ approaches $0$ from the right (denoted by $xto 0^+$), the function grows without bound positively. Analytically, this fact is written as follows:



            $$lim_xto 0^-frac1x=-infty, lim_xto 0^+frac1x=+infty.$$



            For a limit to exist as $x$ approaches a particular point, the two one-sided limits at that point must be equal. Apparently, $lim_xto 0^-frac1xnelim_xto 0^+frac1x$. Thus, $lim_xto 0frac1x=DNE$ (does not exist).



            Strictly speaking, infinite limits are also considered limits that do not exist (a limit that exists should be a number and infinity is not a number). Nevertheless, we still write the equality sign and denote what kind of infinity the function is going to. This helps us better understand the behavior of the function. For example, $lim_xto 2g(x)=-infty$ means that as $x$ approaches $2$ from both sides (from the left and from the right), the function $g(x)$ keeps growing without bound negatively. "It goes to negative infinity" is a simpler way to put it. And this is valuable information because it tells us something about the behavior of the function. It's better to know what kind of infinity a function is going off to than just stating the fact that it simply does not exist.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Thank you so much!!!
              $endgroup$
              – J.Moh
              2 hours ago













            3












            3








            3





            $begingroup$

            It's instructive to take a look at the graph of $f(x)=frac1x$ to better see what exactly is going on with the function as $x$ goes to zero:



            enter image description here



            As you can probably guess, this limit should be split into two one-sided limits for a proper analysis because the function behaves differently depending on which side you approach the value of zero from. As $x$ approaches $0$ from the left (denoted by $xto 0^-$), the function grows without bound negatively. As $x$ approaches $0$ from the right (denoted by $xto 0^+$), the function grows without bound positively. Analytically, this fact is written as follows:



            $$lim_xto 0^-frac1x=-infty, lim_xto 0^+frac1x=+infty.$$



            For a limit to exist as $x$ approaches a particular point, the two one-sided limits at that point must be equal. Apparently, $lim_xto 0^-frac1xnelim_xto 0^+frac1x$. Thus, $lim_xto 0frac1x=DNE$ (does not exist).



            Strictly speaking, infinite limits are also considered limits that do not exist (a limit that exists should be a number and infinity is not a number). Nevertheless, we still write the equality sign and denote what kind of infinity the function is going to. This helps us better understand the behavior of the function. For example, $lim_xto 2g(x)=-infty$ means that as $x$ approaches $2$ from both sides (from the left and from the right), the function $g(x)$ keeps growing without bound negatively. "It goes to negative infinity" is a simpler way to put it. And this is valuable information because it tells us something about the behavior of the function. It's better to know what kind of infinity a function is going off to than just stating the fact that it simply does not exist.






            share|cite|improve this answer











            $endgroup$



            It's instructive to take a look at the graph of $f(x)=frac1x$ to better see what exactly is going on with the function as $x$ goes to zero:



            enter image description here



            As you can probably guess, this limit should be split into two one-sided limits for a proper analysis because the function behaves differently depending on which side you approach the value of zero from. As $x$ approaches $0$ from the left (denoted by $xto 0^-$), the function grows without bound negatively. As $x$ approaches $0$ from the right (denoted by $xto 0^+$), the function grows without bound positively. Analytically, this fact is written as follows:



            $$lim_xto 0^-frac1x=-infty, lim_xto 0^+frac1x=+infty.$$



            For a limit to exist as $x$ approaches a particular point, the two one-sided limits at that point must be equal. Apparently, $lim_xto 0^-frac1xnelim_xto 0^+frac1x$. Thus, $lim_xto 0frac1x=DNE$ (does not exist).



            Strictly speaking, infinite limits are also considered limits that do not exist (a limit that exists should be a number and infinity is not a number). Nevertheless, we still write the equality sign and denote what kind of infinity the function is going to. This helps us better understand the behavior of the function. For example, $lim_xto 2g(x)=-infty$ means that as $x$ approaches $2$ from both sides (from the left and from the right), the function $g(x)$ keeps growing without bound negatively. "It goes to negative infinity" is a simpler way to put it. And this is valuable information because it tells us something about the behavior of the function. It's better to know what kind of infinity a function is going off to than just stating the fact that it simply does not exist.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 17 mins ago

























            answered 3 hours ago









            Michael RybkinMichael Rybkin

            4,279422




            4,279422











            • $begingroup$
              Thank you so much!!!
              $endgroup$
              – J.Moh
              2 hours ago
















            • $begingroup$
              Thank you so much!!!
              $endgroup$
              – J.Moh
              2 hours ago















            $begingroup$
            Thank you so much!!!
            $endgroup$
            – J.Moh
            2 hours ago




            $begingroup$
            Thank you so much!!!
            $endgroup$
            – J.Moh
            2 hours ago

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3181778%2flimit-to-0-ambiguity%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

            Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

            Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko