Integral that is continuous and looks like it converges to a geometric seriesTesting if a geometric series converges by taking limit to infinitySummation of arithmetic-geometric series of higher orderGeometric series with polynomial exponentHow to Recognize a Geometric SeriesShowing an integral equality with series over the integersDiscontinuity of a series of continuous functionsReasons why a Series ConvergesSum of infinite geometric series with two terms in summationUsing geometric series for computing IntegralsLimit of geometric series sum when $r = 1$

Negative Resistance

Philosophical question on logistic regression: why isn't the optimal threshold value trained?

How do I deal with a coworker that keeps asking to make small superficial changes to a report, and it is seriously triggering my anxiety?

How bug prioritization works in agile projects vs non agile

Can a stored procedure reference the database in which it is stored?

Could moose/elk survive in the Amazon forest?

Why is the underscore command _ useful?

How can I practically buy stocks?

Can I criticise the more senior developers around me for not writing clean code?

Don’t seats that recline flat defeat the purpose of having seatbelts?

How important is it that $TERM is correct?

Why must Chinese maps be obfuscated?

Is it acceptable to use working hours to read general interest books?

"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?

What is the most expensive material in the world that could be used to create Pun-Pun's lute?

A Paper Record is What I Hamper

Extracting Dirichlet series coefficients

Drawing a german abacus as in the books of Adam Ries

Is there a word for the censored part of a video?

A faster way to compute the largest prime factor

Injection into a proper class and choice without regularity

Creating a chemical industry from a medieval tech level without petroleum

What to do with someone that cheated their way through university and a PhD program?

How do I reattach a shelf to the wall when it ripped out of the wall?



Integral that is continuous and looks like it converges to a geometric series


Testing if a geometric series converges by taking limit to infinitySummation of arithmetic-geometric series of higher orderGeometric series with polynomial exponentHow to Recognize a Geometric SeriesShowing an integral equality with series over the integersDiscontinuity of a series of continuous functionsReasons why a Series ConvergesSum of infinite geometric series with two terms in summationUsing geometric series for computing IntegralsLimit of geometric series sum when $r = 1$













5












$begingroup$


enter image description here



I think the key word is continous. the RHS totally looks like a sum from a geometric series but I dont see a trick when I think there is one .










share|cite|improve this question









$endgroup$
















    5












    $begingroup$


    enter image description here



    I think the key word is continous. the RHS totally looks like a sum from a geometric series but I dont see a trick when I think there is one .










    share|cite|improve this question









    $endgroup$














      5












      5








      5


      1



      $begingroup$


      enter image description here



      I think the key word is continous. the RHS totally looks like a sum from a geometric series but I dont see a trick when I think there is one .










      share|cite|improve this question









      $endgroup$




      enter image description here



      I think the key word is continous. the RHS totally looks like a sum from a geometric series but I dont see a trick when I think there is one .







      calculus integration multivariable-calculus improper-integrals






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      Randin DRandin D

      1026




      1026




















          1 Answer
          1






          active

          oldest

          votes


















          4












          $begingroup$

          Hint: Let $g(x) = (x+1)^2017$. Let $h = f-g$. By the mean value theorem, there exists $a$ such that
          $$h(a) = int_0^1 h(x) , dx.$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            aha ..do u have an email we can chat more about this problemo?
            $endgroup$
            – Randin D
            5 hours ago











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3202627%2fintegral-that-is-continuous-and-looks-like-it-converges-to-a-geometric-series%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Hint: Let $g(x) = (x+1)^2017$. Let $h = f-g$. By the mean value theorem, there exists $a$ such that
          $$h(a) = int_0^1 h(x) , dx.$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            aha ..do u have an email we can chat more about this problemo?
            $endgroup$
            – Randin D
            5 hours ago















          4












          $begingroup$

          Hint: Let $g(x) = (x+1)^2017$. Let $h = f-g$. By the mean value theorem, there exists $a$ such that
          $$h(a) = int_0^1 h(x) , dx.$$






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            aha ..do u have an email we can chat more about this problemo?
            $endgroup$
            – Randin D
            5 hours ago













          4












          4








          4





          $begingroup$

          Hint: Let $g(x) = (x+1)^2017$. Let $h = f-g$. By the mean value theorem, there exists $a$ such that
          $$h(a) = int_0^1 h(x) , dx.$$






          share|cite|improve this answer









          $endgroup$



          Hint: Let $g(x) = (x+1)^2017$. Let $h = f-g$. By the mean value theorem, there exists $a$ such that
          $$h(a) = int_0^1 h(x) , dx.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          angryavianangryavian

          43k23482




          43k23482











          • $begingroup$
            aha ..do u have an email we can chat more about this problemo?
            $endgroup$
            – Randin D
            5 hours ago
















          • $begingroup$
            aha ..do u have an email we can chat more about this problemo?
            $endgroup$
            – Randin D
            5 hours ago















          $begingroup$
          aha ..do u have an email we can chat more about this problemo?
          $endgroup$
          – Randin D
          5 hours ago




          $begingroup$
          aha ..do u have an email we can chat more about this problemo?
          $endgroup$
          – Randin D
          5 hours ago

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3202627%2fintegral-that-is-continuous-and-looks-like-it-converges-to-a-geometric-series%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

          Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

          Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko