How to calculate the two limits? The Next CEO of Stack OverflowCompute $lim limits_xtoinfty (fracx-2x+2)^x$limits of the sequence $n/(n+1)$How to calculate $lim_xto1left(frac1+cos(pi x)tan^2(pi x)right)^!x^2$Calculate the limit of integralHow to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_x to infty(x+1)e^-2x$How to calculate $lim_nto infty fracn^nn!^2$?Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$

Players Circumventing the limitations of Wish

Calculate the Mean mean of two numbers

How do I fit a non linear curve?

How to get the last not-null value in an ordered column of a huge table?

Cannot shrink btrfs filesystem although there is still data and metadata space left : ERROR: unable to resize '/home': No space left on device

What are the unusually-enlarged wing sections on this P-38 Lightning?

(How) Could a medieval fantasy world survive a magic-induced "nuclear winter"?

What was Carter Burke's job for "the company" in Aliens?

Physiological effects of huge anime eyes

What does "shotgun unity" refer to here in this sentence?

Is it OK to decorate a log book cover?

Towers in the ocean; How deep can they be built?

Is French Guiana a (hard) EU border?

Can you teleport closer to a creature you are Frightened of?

Does higher Oxidation/ reduction potential translate to higher energy storage in battery?

Plausibility of squid whales

Computationally populating tables with probability data

Spaces in which all closed sets are regular closed

Is there a way to save my career from absolute disaster?

Raspberry pi 3 B with Ubuntu 18.04 server arm64: what chip

Inductor and Capacitor in Parallel

Reshaping json / reparing json inside shell script (remove trailing comma)

Getting Stale Gas Out of a Gas Tank w/out Dropping the Tank

What connection does MS Office have to Netscape Navigator?



How to calculate the two limits?



The Next CEO of Stack OverflowCompute $lim limits_xtoinfty (fracx-2x+2)^x$limits of the sequence $n/(n+1)$How to calculate $lim_xto1left(frac1+cos(pi x)tan^2(pi x)right)^!x^2$Calculate the limit of integralHow to evaluate $lim_xtoinftyarctan (4/x)/ |arcsin (-3/x)|$?Is there a way to get at this limit problem algebraically?Calculate $lim_x to infty(x+1)e^-2x$How to calculate $lim_nto infty fracn^nn!^2$?Calculate the limit: $lim limits_n rightarrow infty frac 4(n+3)!-n!n((n+2)!-(n-1)!)$How to solve the limit $limlimits_xto infty (x arctan x - fracxpi2)$










2












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago















2












$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago













2












2








2





$begingroup$



I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?










share|cite|improve this question











$endgroup$





I got stuck on two exercises below
$$
limlimits_xrightarrow +infty left(frac2pi arctan x right)^x \
lim_xrightarrow 3^+ fraccos x ln(x-3)ln(e^x-e^3)
$$




For the first one , let $y=(frac2pi arctan x )^x $, so $ln y =xln (frac2pi arctan x )$, the right part is $infty cdot 0$ type, but seemly, the L 'hopital's rule is useless. PS: I know the $infty cdot 0$ can be become to $fracinftyinfty$ or $frac00$. But when I use the L 'hopital's rule to the $fracinftyinfty$ or $frac00$ the calculation is complex and useless.



For the second one , it is $fracinftyinfty$ type, also useless the L 'hopital's rule is. How to calculate it ?







limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago







lanse7pty

















asked 2 hours ago









lanse7ptylanse7pty

1,8361823




1,8361823











  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago
















  • $begingroup$
    For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
    $endgroup$
    – Arturo Magidin
    2 hours ago















$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago




$begingroup$
For $0timesinfty$ types, you can algebraically transform them into either $frac00$ or $fracinftyinfty$, where you can try using L'Hopital's (though it may not help): just remember that $ab = fraca frac1b $. And, L'Hopital's Rule is applicable for $fracinftyinfty$ indeterminates...
$endgroup$
– Arturo Magidin
2 hours ago










3 Answers
3






active

oldest

votes


















1












$begingroup$

Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






share|cite|improve this answer











$endgroup$




















    1












    $begingroup$

    Without L'Hospital
    $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



    Now, by Taylor for large values of $x$
    $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
    $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
    $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
    $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






    share|cite|improve this answer









    $endgroup$




















      0












      $begingroup$

      I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        1












        $begingroup$

        Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






        share|cite|improve this answer











        $endgroup$

















          1












          $begingroup$

          Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






          share|cite|improve this answer











          $endgroup$















            1












            1








            1





            $begingroup$

            Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$






            share|cite|improve this answer











            $endgroup$



            Rewrite $inftycdot 0$ as $infty cdot dfrac1infty$. Now you can apply L'Hopital's rule: $$lim_xto +inftydfracleft(ln 2/picdotarctan x right)1/x=lim_xto +inftydfracpi/2cdot arctan x-1/x^2cdot dfrac11+x^2=-dfracpi 2lim_xto +inftyarctan xcdot dfracx^21+x^2$$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 1 hour ago

























            answered 1 hour ago









            Paras KhoslaParas Khosla

            2,726423




            2,726423





















                1












                $begingroup$

                Without L'Hospital
                $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                Now, by Taylor for large values of $x$
                $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                share|cite|improve this answer









                $endgroup$

















                  1












                  $begingroup$

                  Without L'Hospital
                  $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                  Now, by Taylor for large values of $x$
                  $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                  $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                  $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                  $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                  share|cite|improve this answer









                  $endgroup$















                    1












                    1








                    1





                    $begingroup$

                    Without L'Hospital
                    $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                    $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                    $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                    $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached






                    share|cite|improve this answer









                    $endgroup$



                    Without L'Hospital
                    $$y=left(frac2pi arctan (x) right)^ximplies log(y)=x logleft(frac2pi arctan (x) right) $$



                    Now, by Taylor for large values of $x$
                    $$arctan (x)=fracpi 2-frac1x+frac13 x^3+Oleft(frac1x^4right)$$
                    $$frac2pi arctan (x) =1-frac2pi x+frac23 pi x^3+Oleft(frac1x^4right)$$ Taylor again
                    $$logleft(frac2pi arctan (x) right)= -frac2pi x-frac2pi ^2 x^2+Oleft(frac1x^3right)$$
                    $$log(y)=xlogleft(frac2pi arctan (x) right)= -frac2pi -frac2pi ^2 x+Oleft(frac1x^2right)$$ Just continue with Taylor using $y=e^log(y)$ if you want to see not only the limit but also how it is approached







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    Claude LeiboviciClaude Leibovici

                    125k1158136




                    125k1158136





















                        0












                        $begingroup$

                        I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                        share|cite|improve this answer









                        $endgroup$

















                          0












                          $begingroup$

                          I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                          share|cite|improve this answer









                          $endgroup$















                            0












                            0








                            0





                            $begingroup$

                            I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.






                            share|cite|improve this answer









                            $endgroup$



                            I believe you can apply L'hopital's rule for an indeterminate form like $fracinftyinfty$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 2 hours ago









                            AdmuthAdmuth

                            185




                            185



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3170200%2fhow-to-calculate-the-two-limits%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                                Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                                Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko