Find original functions from a composite functionComposite functions and one to oneFinding range of transformation of function from range of originalHow to find the original function from a definite integral.How to find composite functions upto infinity for a given function?Behaviour of composition functions of a composite functionFunctions propertiesCan't figure out this odd functionComposite function simple questionMore on periodic functions - from 100 periodic functionsfinding an outside function given composite function

Why is an old chain unsafe?

How is it possible for user to changed after storage was encrypted? (on OS X, Android)

Japan - Plan around max visa duration

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Example of a relative pronoun

Is it possible to do 50 km distance without any previous training?

Why is "Reports" in sentence down without "The"

Are there any consumables that function as addictive (psychedelic) drugs?

Why is the design of haulage companies so “special”?

How to type dʒ symbol (IPA) on Mac?

How can I hide my bitcoin transactions to protect anonymity from others?

Why Is Death Allowed In the Matrix?

Modification to Chariots for Heavy Cavalry Analogue for 4-armed race

Should I join office cleaning event for free?

How can bays and straits be determined in a procedurally generated map?

How to report a triplet of septets in NMR tabulation?

Infinite past with a beginning?

Draw simple lines in Inkscape

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

What is the offset in a seaplane's hull?

Work Breakdown with Tikz

How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?

What typically incentivizes a professor to change jobs to a lower ranking university?

What is the command to reset a PC without deleting any files



Find original functions from a composite function


Composite functions and one to oneFinding range of transformation of function from range of originalHow to find the original function from a definite integral.How to find composite functions upto infinity for a given function?Behaviour of composition functions of a composite functionFunctions propertiesCan't figure out this odd functionComposite function simple questionMore on periodic functions - from 100 periodic functionsfinding an outside function given composite function













0












$begingroup$


I have the following problem that I am stuck on:



$ f(g(x))=2^x+5 $



and I must find $f(x)$ and $g(x)$



Can anyone help?










share|cite|improve this question









New contributor




Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    $fg$ is the product of $f,g$ or their composition?
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
    $endgroup$
    – Daniel Amaral
    6 hours ago






  • 4




    $begingroup$
    You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^x+5$ would satisfy your requirements, but I doubt it is of any use.
    $endgroup$
    – Sil
    6 hours ago











  • $begingroup$
    In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^nx+5,g(x)=x/n$.
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
    $endgroup$
    – Daniel Amaral
    6 hours ago















0












$begingroup$


I have the following problem that I am stuck on:



$ f(g(x))=2^x+5 $



and I must find $f(x)$ and $g(x)$



Can anyone help?










share|cite|improve this question









New contributor




Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    $fg$ is the product of $f,g$ or their composition?
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
    $endgroup$
    – Daniel Amaral
    6 hours ago






  • 4




    $begingroup$
    You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^x+5$ would satisfy your requirements, but I doubt it is of any use.
    $endgroup$
    – Sil
    6 hours ago











  • $begingroup$
    In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^nx+5,g(x)=x/n$.
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
    $endgroup$
    – Daniel Amaral
    6 hours ago













0












0








0





$begingroup$


I have the following problem that I am stuck on:



$ f(g(x))=2^x+5 $



and I must find $f(x)$ and $g(x)$



Can anyone help?










share|cite|improve this question









New contributor




Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




I have the following problem that I am stuck on:



$ f(g(x))=2^x+5 $



and I must find $f(x)$ and $g(x)$



Can anyone help?







functions






share|cite|improve this question









New contributor




Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 6 hours ago









Arthur

122k7122211




122k7122211






New contributor




Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









Daniel AmaralDaniel Amaral

63




63




New contributor




Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Daniel Amaral is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    $fg$ is the product of $f,g$ or their composition?
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
    $endgroup$
    – Daniel Amaral
    6 hours ago






  • 4




    $begingroup$
    You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^x+5$ would satisfy your requirements, but I doubt it is of any use.
    $endgroup$
    – Sil
    6 hours ago











  • $begingroup$
    In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^nx+5,g(x)=x/n$.
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
    $endgroup$
    – Daniel Amaral
    6 hours ago
















  • $begingroup$
    $fg$ is the product of $f,g$ or their composition?
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
    $endgroup$
    – Daniel Amaral
    6 hours ago






  • 4




    $begingroup$
    You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^x+5$ would satisfy your requirements, but I doubt it is of any use.
    $endgroup$
    – Sil
    6 hours ago











  • $begingroup$
    In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^nx+5,g(x)=x/n$.
    $endgroup$
    – Shubham Johri
    6 hours ago










  • $begingroup$
    Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
    $endgroup$
    – Daniel Amaral
    6 hours ago















$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
6 hours ago




$begingroup$
$fg$ is the product of $f,g$ or their composition?
$endgroup$
– Shubham Johri
6 hours ago












$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
6 hours ago




$begingroup$
It is their composition. Also, it is 2 to the power of (x+5). Sorry I am new here I wasn't really sure how to make it like that.
$endgroup$
– Daniel Amaral
6 hours ago




4




4




$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^x+5$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
6 hours ago





$begingroup$
You should probably add more context, this way it is not clear for what do you want this, for example $g(x)=x$ and $f(x)=2^x+5$ would satisfy your requirements, but I doubt it is of any use.
$endgroup$
– Sil
6 hours ago













$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^nx+5,g(x)=x/n$.
$endgroup$
– Shubham Johri
6 hours ago




$begingroup$
In other words, there are infinitely many solutions to your problem. Consider $f(x)=2^nx+5,g(x)=x/n$.
$endgroup$
– Shubham Johri
6 hours ago












$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
6 hours ago




$begingroup$
Well that's really all that was in the question. Basically it said the expression for the composition of f(x) and g(x) is that, and it asked to find expressions for f(x) and g(x)
$endgroup$
– Daniel Amaral
6 hours ago










2 Answers
2






active

oldest

votes


















7












$begingroup$

Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^x+5$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^x+t, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^2x+10, f(x)=sqrtx$, etc.






share|cite|improve this answer









$endgroup$




















    4












    $begingroup$

    While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^textsomething involving x$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.



    If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^g(x),$ so we'd need $g(x)=x+5.$



    On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^x+5$? Well, remember your exponent rules: $2^x+5=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Daniel Amaral is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178593%2ffind-original-functions-from-a-composite-function%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^x+5$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^x+t, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^2x+10, f(x)=sqrtx$, etc.






      share|cite|improve this answer









      $endgroup$

















        7












        $begingroup$

        Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^x+5$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^x+t, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^2x+10, f(x)=sqrtx$, etc.






        share|cite|improve this answer









        $endgroup$















          7












          7








          7





          $begingroup$

          Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^x+5$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^x+t, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^2x+10, f(x)=sqrtx$, etc.






          share|cite|improve this answer









          $endgroup$



          Without more context, there are, of course, many solutions. For example, a rather trivial one would be $f(x)=x, g(x)=2^x+5$ (or switch the two around) or $f(x)=2^x$ and $g(x)=x+5$. More examples include $f(x)=2^x+t, g(x)=x+5-t$ for any fixed $t$, $g(x)=2^2x+10, f(x)=sqrtx$, etc.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 5 hours ago









          Yuval GatYuval Gat

          9161213




          9161213





















              4












              $begingroup$

              While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^textsomething involving x$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.



              If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^g(x),$ so we'd need $g(x)=x+5.$



              On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^x+5$? Well, remember your exponent rules: $2^x+5=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$






              share|cite|improve this answer









              $endgroup$

















                4












                $begingroup$

                While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^textsomething involving x$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.



                If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^g(x),$ so we'd need $g(x)=x+5.$



                On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^x+5$? Well, remember your exponent rules: $2^x+5=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$






                share|cite|improve this answer









                $endgroup$















                  4












                  4








                  4





                  $begingroup$

                  While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^textsomething involving x$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.



                  If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^g(x),$ so we'd need $g(x)=x+5.$



                  On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^x+5$? Well, remember your exponent rules: $2^x+5=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$






                  share|cite|improve this answer









                  $endgroup$



                  While there are infinitely-many functions $f,g$ that would do the trick, this is probably intended to give you practice choosing fairly basic (even fundamental) examples, but without just choosing one of them to be the identity function. Clearly, we'll need one of our functions to be $2^textsomething involving x$ in order for that to happen. Ideally, we'd like it to be simply $2^x.$ But which one should it be? Well, it turns out not to matter.



                  If we make $f(x)=2^x,$ then $fbigl(g(x)bigr)=2^g(x),$ so we'd need $g(x)=x+5.$



                  On the other hand, if we made $g(x)=2^x,$ then we'd have $fbigl(g(x)bigr)=fleft(2^xright),$ but what can we do to $2^x$ to turn it into $2^x+5$? Well, remember your exponent rules: $2^x+5=2^xcdot 2^5=2^xcdot 32.$ Thus, we need $f(x)=32x.$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 5 hours ago









                  Cameron BuieCameron Buie

                  86.6k773161




                  86.6k773161




















                      Daniel Amaral is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Daniel Amaral is a new contributor. Be nice, and check out our Code of Conduct.












                      Daniel Amaral is a new contributor. Be nice, and check out our Code of Conduct.











                      Daniel Amaral is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178593%2ffind-original-functions-from-a-composite-function%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Disable / Remove link to Product Items in Cart Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?How can I limit products that can be bought / added to cart?Remove item from cartHide “Add to Cart” button if specific products are already in cart“Prettifying” the custom options in cart pageCreate link in cart sidebar to view all added items After limit reachedLink products together in checkout/cartHow to Get product from cart and add it againHide action-edit on cart page if simple productRemoving Cart items - ObserverRemove wishlist items when added to cart

                      Helsingin valtaus Sisällysluettelo Taustaa | Yleistä sotatoimista | Osapuolet | Taistelut Helsingin ympäristössä | Punaisten antautumissuunnitelma | Taistelujen kulku Helsingissä | Valtauksen jälkeen | Tappiot | Muistaminen | Kirjallisuutta | Lähteet | Aiheesta muualla | NavigointivalikkoTeoksen verkkoversioTeoksen verkkoversioGoogle BooksSisällissota Helsingissä päättyi tasan 95 vuotta sittenSaksalaisten ylivoima jyräsi punaisen HelsinginSuomalaiset kuvaavat sotien jälkiä kaupungeissa – katso kuvat ja tarinat tutuilta kulmiltaHelsingin valtaus 90 vuotta sittenSaksalaiset valtasivat HelsinginHyökkäys HelsinkiinHelsingin valtaus 12.–13.4. 1918Saksalaiset käyttivät ihmiskilpiä Helsingin valtauksessa 1918Teoksen verkkoversioTeoksen verkkoversioSaksalaiset hyökkäävät Etelä-SuomeenTaistelut LeppävaarassaSotilaat ja taistelutLeppävaara 1918 huhtikuussa. KapinatarinaHelsingin taistelut 1918Saksalaisten voitonparaati HelsingissäHelsingin valtausta juhlittiinSaksalaisten Helsinki vuonna 1918Helsingin taistelussa kaatuneet valkokaartilaisetHelsinkiin haudatut taisteluissa kaatuneet punaiset12.4.1918 Helsingin valtauksessa saksalaiset apujoukot vapauttavat kaupunginVapaussodan muistomerkkejä Helsingissä ja pääkaupunkiseudullaCrescendo / Vuoden 1918 Kansalaissodan uhrien muistomerkkim

                      Adjektiivitarina Tarinan tekeminen | Esimerkki: ennen | Esimerkki: jälkeen | Navigointivalikko